Spaces:
Sleeping
Sleeping
""" Vision Transformer (ViT) in PyTorch | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch | |
import torch.nn as nn | |
from functools import partial | |
from einops import rearrange | |
from baselines.ViT.helpers import load_pretrained | |
from baselines.ViT.weight_init import trunc_normal_ | |
from baselines.ViT.layer_helpers import to_2tuple | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
# patch models | |
'vit_small_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth', | |
), | |
'vit_base_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), | |
), | |
'vit_large_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
} | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False,attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.attn_gradients = None | |
self.attention_map = None | |
def save_attn_gradients(self, attn_gradients): | |
self.attn_gradients = attn_gradients | |
def get_attn_gradients(self): | |
return self.attn_gradients | |
def save_attention_map(self, attention_map): | |
self.attention_map = attention_map | |
def get_attention_map(self): | |
return self.attention_map | |
def forward(self, x, register_hook=False): | |
b, n, _, h = *x.shape, self.num_heads | |
# self.save_output(x) | |
# x.register_hook(self.save_output_grad) | |
qkv = self.qkv(x) | |
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv = 3, h = h) | |
dots = torch.einsum('bhid,bhjd->bhij', q, k) * self.scale | |
attn = dots.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
out = torch.einsum('bhij,bhjd->bhid', attn, v) | |
self.save_attention_map(attn) | |
if register_hook: | |
attn.register_hook(self.save_attn_gradients) | |
out = rearrange(out, 'b h n d -> b n (h d)') | |
out = self.proj(out) | |
out = self.proj_drop(out) | |
return out | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x, register_hook=False): | |
x = x + self.attn(self.norm1(x), register_hook=register_hook) | |
x = x + self.mlp(self.norm2(x)) | |
return x | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
# FIXME look at relaxing size constraints | |
assert H == self.img_size[0] and W == self.img_size[1], \ | |
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
class VisionTransformer(nn.Module): | |
""" Vision Transformer | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=False, drop_rate=0., attn_drop_rate=0., norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) | |
# Classifier head | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
trunc_normal_(self.pos_embed, std=.02) | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def forward(self, x, register_hook=False): | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = x + self.pos_embed | |
x = self.pos_drop(x) | |
for blk in self.blocks: | |
x = blk(x, register_hook=register_hook) | |
x = self.norm(x) | |
x = x[:, 0] | |
x = self.head(x) | |
return x | |
def _conv_filter(state_dict, patch_size=16): | |
""" convert patch embedding weight from manual patchify + linear proj to conv""" | |
out_dict = {} | |
for k, v in state_dict.items(): | |
if 'patch_embed.proj.weight' in k: | |
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) | |
out_dict[k] = v | |
return out_dict | |
def vit_base_patch16_224(pretrained=False, **kwargs): | |
model = VisionTransformer( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = default_cfgs['vit_base_patch16_224'] | |
if pretrained: | |
load_pretrained( | |
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter) | |
return model | |
def vit_large_patch16_224(pretrained=False, **kwargs): | |
model = VisionTransformer( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, | |
norm_layer=partial(nn.LayerNorm, eps=1e-6), **kwargs) | |
model.default_cfg = default_cfgs['vit_large_patch16_224'] | |
if pretrained: | |
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3)) | |
return model | |