Spaces:
Sleeping
Sleeping
""" Vision Transformer (ViT) in PyTorch | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from modules.layers_ours import * | |
from baselines.ViT.helpers import load_pretrained | |
from baselines.ViT.weight_init import trunc_normal_ | |
from baselines.ViT.layer_helpers import to_2tuple | |
def _cfg(url='', **kwargs): | |
return { | |
'url': url, | |
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, | |
'crop_pct': .9, 'interpolation': 'bicubic', | |
'first_conv': 'patch_embed.proj', 'classifier': 'head', | |
**kwargs | |
} | |
default_cfgs = { | |
# patch models | |
'vit_small_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/vit_small_p16_224-15ec54c9.pth', | |
), | |
'vit_base_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_p16_224-80ecf9dd.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), | |
), | |
'vit_large_patch16_224': _cfg( | |
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_p16_224-4ee7a4dc.pth', | |
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)), | |
} | |
def compute_rollout_attention(all_layer_matrices, start_layer=0): | |
# adding residual consideration | |
num_tokens = all_layer_matrices[0].shape[1] | |
batch_size = all_layer_matrices[0].shape[0] | |
eye = torch.eye(num_tokens).expand(batch_size, num_tokens, num_tokens).to(all_layer_matrices[0].device) | |
all_layer_matrices = [all_layer_matrices[i] + eye for i in range(len(all_layer_matrices))] | |
# all_layer_matrices = [all_layer_matrices[i] / all_layer_matrices[i].sum(dim=-1, keepdim=True) | |
# for i in range(len(all_layer_matrices))] | |
joint_attention = all_layer_matrices[start_layer] | |
for i in range(start_layer+1, len(all_layer_matrices)): | |
joint_attention = all_layer_matrices[i].bmm(joint_attention) | |
return joint_attention | |
class Mlp(nn.Module): | |
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = Linear(in_features, hidden_features) | |
self.act = GELU() | |
self.fc2 = Linear(hidden_features, out_features) | |
self.drop = Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
def relprop(self, cam, **kwargs): | |
cam = self.drop.relprop(cam, **kwargs) | |
cam = self.fc2.relprop(cam, **kwargs) | |
cam = self.act.relprop(cam, **kwargs) | |
cam = self.fc1.relprop(cam, **kwargs) | |
return cam | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False,attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = head_dim ** -0.5 | |
# A = Q*K^T | |
self.matmul1 = einsum('bhid,bhjd->bhij') | |
# attn = A*V | |
self.matmul2 = einsum('bhij,bhjd->bhid') | |
self.qkv = Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = Dropout(attn_drop) | |
self.proj = Linear(dim, dim) | |
self.proj_drop = Dropout(proj_drop) | |
self.softmax = Softmax(dim=-1) | |
self.attn_cam = None | |
self.attn = None | |
self.v = None | |
self.v_cam = None | |
self.attn_gradients = None | |
def get_attn(self): | |
return self.attn | |
def save_attn(self, attn): | |
self.attn = attn | |
def save_attn_cam(self, cam): | |
self.attn_cam = cam | |
def get_attn_cam(self): | |
return self.attn_cam | |
def get_v(self): | |
return self.v | |
def save_v(self, v): | |
self.v = v | |
def save_v_cam(self, cam): | |
self.v_cam = cam | |
def get_v_cam(self): | |
return self.v_cam | |
def save_attn_gradients(self, attn_gradients): | |
self.attn_gradients = attn_gradients | |
def get_attn_gradients(self): | |
return self.attn_gradients | |
def forward(self, x): | |
b, n, _, h = *x.shape, self.num_heads | |
qkv = self.qkv(x) | |
q, k, v = rearrange(qkv, 'b n (qkv h d) -> qkv b h n d', qkv=3, h=h) | |
self.save_v(v) | |
dots = self.matmul1([q, k]) * self.scale | |
attn = self.softmax(dots) | |
attn = self.attn_drop(attn) | |
self.save_attn(attn) | |
attn.register_hook(self.save_attn_gradients) | |
out = self.matmul2([attn, v]) | |
out = rearrange(out, 'b h n d -> b n (h d)') | |
out = self.proj(out) | |
out = self.proj_drop(out) | |
return out | |
def relprop(self, cam, **kwargs): | |
cam = self.proj_drop.relprop(cam, **kwargs) | |
cam = self.proj.relprop(cam, **kwargs) | |
cam = rearrange(cam, 'b n (h d) -> b h n d', h=self.num_heads) | |
# attn = A*V | |
(cam1, cam_v)= self.matmul2.relprop(cam, **kwargs) | |
cam1 /= 2 | |
cam_v /= 2 | |
self.save_v_cam(cam_v) | |
self.save_attn_cam(cam1) | |
cam1 = self.attn_drop.relprop(cam1, **kwargs) | |
cam1 = self.softmax.relprop(cam1, **kwargs) | |
# A = Q*K^T | |
(cam_q, cam_k) = self.matmul1.relprop(cam1, **kwargs) | |
cam_q /= 2 | |
cam_k /= 2 | |
cam_qkv = rearrange([cam_q, cam_k, cam_v], 'qkv b h n d -> b n (qkv h d)', qkv=3, h=self.num_heads) | |
return self.qkv.relprop(cam_qkv, **kwargs) | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.): | |
super().__init__() | |
self.norm1 = LayerNorm(dim, eps=1e-6) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) | |
self.norm2 = LayerNorm(dim, eps=1e-6) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop) | |
self.add1 = Add() | |
self.add2 = Add() | |
self.clone1 = Clone() | |
self.clone2 = Clone() | |
def forward(self, x): | |
x1, x2 = self.clone1(x, 2) | |
x = self.add1([x1, self.attn(self.norm1(x2))]) | |
x1, x2 = self.clone2(x, 2) | |
x = self.add2([x1, self.mlp(self.norm2(x2))]) | |
return x | |
def relprop(self, cam, **kwargs): | |
(cam1, cam2) = self.add2.relprop(cam, **kwargs) | |
cam2 = self.mlp.relprop(cam2, **kwargs) | |
cam2 = self.norm2.relprop(cam2, **kwargs) | |
cam = self.clone2.relprop((cam1, cam2), **kwargs) | |
(cam1, cam2) = self.add1.relprop(cam, **kwargs) | |
cam2 = self.attn.relprop(cam2, **kwargs) | |
cam2 = self.norm1.relprop(cam2, **kwargs) | |
cam = self.clone1.relprop((cam1, cam2), **kwargs) | |
return cam | |
class PatchEmbed(nn.Module): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
# FIXME look at relaxing size constraints | |
assert H == self.img_size[0] and W == self.img_size[1], \ | |
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
def relprop(self, cam, **kwargs): | |
cam = cam.transpose(1,2) | |
cam = cam.reshape(cam.shape[0], cam.shape[1], | |
(self.img_size[0] // self.patch_size[0]), (self.img_size[1] // self.patch_size[1])) | |
return self.proj.relprop(cam, **kwargs) | |
class VisionTransformer(nn.Module): | |
""" Vision Transformer with support for patch or hybrid CNN input stage | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=False, mlp_head=False, drop_rate=0., attn_drop_rate=0.): | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.blocks = nn.ModuleList([ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, | |
drop=drop_rate, attn_drop=attn_drop_rate) | |
for i in range(depth)]) | |
self.norm = LayerNorm(embed_dim) | |
if mlp_head: | |
# paper diagram suggests 'MLP head', but results in 4M extra parameters vs paper | |
self.head = Mlp(embed_dim, int(embed_dim * mlp_ratio), num_classes) | |
else: | |
# with a single Linear layer as head, the param count within rounding of paper | |
self.head = Linear(embed_dim, num_classes) | |
# FIXME not quite sure what the proper weight init is supposed to be, | |
# normal / trunc normal w/ std == .02 similar to other Bert like transformers | |
trunc_normal_(self.pos_embed, std=.02) # embeddings same as weights? | |
trunc_normal_(self.cls_token, std=.02) | |
self.apply(self._init_weights) | |
self.pool = IndexSelect() | |
self.add = Add() | |
self.inp_grad = None | |
def save_inp_grad(self,grad): | |
self.inp_grad = grad | |
def get_inp_grad(self): | |
return self.inp_grad | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=.02) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token'} | |
def forward(self, x): | |
B = x.shape[0] | |
x = self.patch_embed(x) | |
cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
x = self.add([x, self.pos_embed]) | |
x.register_hook(self.save_inp_grad) | |
for blk in self.blocks: | |
x = blk(x) | |
x = self.norm(x) | |
x = self.pool(x, dim=1, indices=torch.tensor(0, device=x.device)) | |
x = x.squeeze(1) | |
x = self.head(x) | |
return x | |
def relprop(self, cam=None,method="transformer_attribution", is_ablation=False, start_layer=0, **kwargs): | |
# print(kwargs) | |
# print("conservation 1", cam.sum()) | |
cam = self.head.relprop(cam, **kwargs) | |
cam = cam.unsqueeze(1) | |
cam = self.pool.relprop(cam, **kwargs) | |
cam = self.norm.relprop(cam, **kwargs) | |
for blk in reversed(self.blocks): | |
cam = blk.relprop(cam, **kwargs) | |
# print("conservation 2", cam.sum()) | |
# print("min", cam.min()) | |
if method == "full": | |
(cam, _) = self.add.relprop(cam, **kwargs) | |
cam = cam[:, 1:] | |
cam = self.patch_embed.relprop(cam, **kwargs) | |
# sum on channels | |
cam = cam.sum(dim=1) | |
return cam | |
elif method == "rollout": | |
# cam rollout | |
attn_cams = [] | |
for blk in self.blocks: | |
attn_heads = blk.attn.get_attn_cam().clamp(min=0) | |
avg_heads = (attn_heads.sum(dim=1) / attn_heads.shape[1]).detach() | |
attn_cams.append(avg_heads) | |
cam = compute_rollout_attention(attn_cams, start_layer=start_layer) | |
cam = cam[:, 0, 1:] | |
return cam | |
# our method, method name grad is legacy | |
elif method == "transformer_attribution" or method == "grad": | |
cams = [] | |
for blk in self.blocks: | |
grad = blk.attn.get_attn_gradients() | |
cam = blk.attn.get_attn_cam() | |
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) | |
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) | |
cam = grad * cam | |
cam = cam.clamp(min=0).mean(dim=0) | |
cams.append(cam.unsqueeze(0)) | |
rollout = compute_rollout_attention(cams, start_layer=start_layer) | |
cam = rollout[:, 0, 1:] | |
return cam | |
elif method == "last_layer": | |
cam = self.blocks[-1].attn.get_attn_cam() | |
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) | |
if is_ablation: | |
grad = self.blocks[-1].attn.get_attn_gradients() | |
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) | |
cam = grad * cam | |
cam = cam.clamp(min=0).mean(dim=0) | |
cam = cam[0, 1:] | |
return cam | |
elif method == "last_layer_attn": | |
cam = self.blocks[-1].attn.get_attn() | |
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) | |
cam = cam.clamp(min=0).mean(dim=0) | |
cam = cam[0, 1:] | |
return cam | |
elif method == "second_layer": | |
cam = self.blocks[1].attn.get_attn_cam() | |
cam = cam[0].reshape(-1, cam.shape[-1], cam.shape[-1]) | |
if is_ablation: | |
grad = self.blocks[1].attn.get_attn_gradients() | |
grad = grad[0].reshape(-1, grad.shape[-1], grad.shape[-1]) | |
cam = grad * cam | |
cam = cam.clamp(min=0).mean(dim=0) | |
cam = cam[0, 1:] | |
return cam | |
def _conv_filter(state_dict, patch_size=16): | |
""" convert patch embedding weight from manual patchify + linear proj to conv""" | |
out_dict = {} | |
for k, v in state_dict.items(): | |
if 'patch_embed.proj.weight' in k: | |
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) | |
out_dict[k] = v | |
return out_dict | |
def vit_base_patch16_224(pretrained=False, **kwargs): | |
model = VisionTransformer( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, **kwargs) | |
model.default_cfg = default_cfgs['vit_base_patch16_224'] | |
if pretrained: | |
load_pretrained( | |
model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3), filter_fn=_conv_filter) | |
return model | |
def vit_large_patch16_224(pretrained=False, **kwargs): | |
model = VisionTransformer( | |
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True, **kwargs) | |
model.default_cfg = default_cfgs['vit_large_patch16_224'] | |
if pretrained: | |
load_pretrained(model, num_classes=model.num_classes, in_chans=kwargs.get('in_chans', 3)) | |
return model | |
def deit_base_patch16_224(pretrained=False, **kwargs): | |
model = VisionTransformer( | |
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True, **kwargs) | |
model.default_cfg = _cfg() | |
if pretrained: | |
checkpoint = torch.hub.load_state_dict_from_url( | |
url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth", | |
map_location="cpu", check_hash=True | |
) | |
model.load_state_dict(checkpoint["model"]) | |
return model |