File size: 10,006 Bytes
3d27aee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

import torch
import os
from tqdm import tqdm
import numpy as np
import argparse

# Import saliency methods and models
from ViT_explanation_generator import Baselines
from ViT_new import vit_base_patch16_224
# from models.vgg import vgg19
import glob

from dataset.expl_hdf5 import ImagenetResults


def normalize(tensor,
              mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
    tensor.sub_(mean[None, :, None, None]).div_(std[None, :, None, None])
    return tensor


def eval(args):
    num_samples = 0
    num_correct_model = np.zeros((len(imagenet_ds,)))
    dissimilarity_model = np.zeros((len(imagenet_ds,)))
    model_index = 0

    if args.scale == 'per':
        base_size = 224 * 224
        perturbation_steps = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
    elif args.scale == '100':
        base_size = 100
        perturbation_steps = [5, 10, 15, 20, 25, 30, 35, 40, 45]
    else:
        raise Exception('scale not valid')

    num_correct_pertub = np.zeros((9, len(imagenet_ds)))
    dissimilarity_pertub = np.zeros((9, len(imagenet_ds)))
    logit_diff_pertub = np.zeros((9, len(imagenet_ds)))
    prob_diff_pertub = np.zeros((9, len(imagenet_ds)))
    perturb_index = 0

    for batch_idx, (data, vis, target) in enumerate(tqdm(sample_loader)):
        # Update the number of samples
        num_samples += len(data)

        data = data.to(device)
        vis = vis.to(device)
        target = target.to(device)
        norm_data = normalize(data.clone())

        # Compute model accuracy
        pred = model(norm_data)
        pred_probabilities = torch.softmax(pred, dim=1)
        pred_org_logit = pred.data.max(1, keepdim=True)[0].squeeze(1)
        pred_org_prob = pred_probabilities.data.max(1, keepdim=True)[0].squeeze(1)
        pred_class = pred.data.max(1, keepdim=True)[1].squeeze(1)
        tgt_pred = (target == pred_class).type(target.type()).data.cpu().numpy()
        num_correct_model[model_index:model_index+len(tgt_pred)] = tgt_pred

        probs = torch.softmax(pred, dim=1)
        target_probs = torch.gather(probs, 1, target[:, None])[:, 0]
        second_probs = probs.data.topk(2, dim=1)[0][:, 1]
        temp = torch.log(target_probs / second_probs).data.cpu().numpy()
        dissimilarity_model[model_index:model_index+len(temp)] = temp

        if args.wrong:
            wid = np.argwhere(tgt_pred == 0).flatten()
            if len(wid) == 0:
                continue
            wid = torch.from_numpy(wid).to(vis.device)
            vis = vis.index_select(0, wid)
            data = data.index_select(0, wid)
            target = target.index_select(0, wid)

        # Save original shape
        org_shape = data.shape

        if args.neg:
            vis = -vis

        vis = vis.reshape(org_shape[0], -1)

        for i in range(len(perturbation_steps)):
            _data = data.clone()

            _, idx = torch.topk(vis, int(base_size * perturbation_steps[i]), dim=-1)
            idx = idx.unsqueeze(1).repeat(1, org_shape[1], 1)
            _data = _data.reshape(org_shape[0], org_shape[1], -1)
            _data = _data.scatter_(-1, idx, 0)
            _data = _data.reshape(*org_shape)

            _norm_data = normalize(_data)

            out = model(_norm_data)

            pred_probabilities = torch.softmax(out, dim=1)
            pred_prob = pred_probabilities.data.max(1, keepdim=True)[0].squeeze(1)
            diff = (pred_prob - pred_org_prob).data.cpu().numpy()
            prob_diff_pertub[i, perturb_index:perturb_index+len(diff)] = diff

            pred_logit = out.data.max(1, keepdim=True)[0].squeeze(1)
            diff = (pred_logit - pred_org_logit).data.cpu().numpy()
            logit_diff_pertub[i, perturb_index:perturb_index+len(diff)] = diff

            target_class = out.data.max(1, keepdim=True)[1].squeeze(1)
            temp = (target == target_class).type(target.type()).data.cpu().numpy()
            num_correct_pertub[i, perturb_index:perturb_index+len(temp)] = temp

            probs_pertub = torch.softmax(out, dim=1)
            target_probs = torch.gather(probs_pertub, 1, target[:, None])[:, 0]
            second_probs = probs_pertub.data.topk(2, dim=1)[0][:, 1]
            temp = torch.log(target_probs / second_probs).data.cpu().numpy()
            dissimilarity_pertub[i, perturb_index:perturb_index+len(temp)] = temp

        model_index += len(target)
        perturb_index += len(target)

    np.save(os.path.join(args.experiment_dir, 'model_hits.npy'), num_correct_model)
    np.save(os.path.join(args.experiment_dir, 'model_dissimilarities.npy'), dissimilarity_model)
    np.save(os.path.join(args.experiment_dir, 'perturbations_hits.npy'), num_correct_pertub[:, :perturb_index])
    np.save(os.path.join(args.experiment_dir, 'perturbations_dissimilarities.npy'), dissimilarity_pertub[:, :perturb_index])
    np.save(os.path.join(args.experiment_dir, 'perturbations_logit_diff.npy'), logit_diff_pertub[:, :perturb_index])
    np.save(os.path.join(args.experiment_dir, 'perturbations_prob_diff.npy'), prob_diff_pertub[:, :perturb_index])

    print(np.mean(num_correct_model), np.std(num_correct_model))
    print(np.mean(dissimilarity_model), np.std(dissimilarity_model))
    print(perturbation_steps)
    print(np.mean(num_correct_pertub, axis=1), np.std(num_correct_pertub, axis=1))
    print(np.mean(dissimilarity_pertub, axis=1), np.std(dissimilarity_pertub, axis=1))


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Train a segmentation')
    parser.add_argument('--batch-size', type=int,
                        default=16,
                        help='')
    parser.add_argument('--neg', type=bool,
                        default=True,
                        help='')
    parser.add_argument('--value', action='store_true',
                        default=False,
                        help='')
    parser.add_argument('--scale', type=str,
                        default='per',
                        choices=['per', '100'],
                        help='')
    parser.add_argument('--method', type=str,
                        default='grad_rollout',
                        choices=['rollout', 'lrp', 'transformer_attribution', 'full_lrp', 'v_gradcam', 'lrp_last_layer',
                                 'lrp_second_layer', 'gradcam',
                                 'attn_last_layer', 'attn_gradcam', 'input_grads'],
                        help='')
    parser.add_argument('--vis-class', type=str,
                        default='top',
                        choices=['top', 'target', 'index'],
                        help='')
    parser.add_argument('--wrong', action='store_true',
                        default=False,
                        help='')
    parser.add_argument('--class-id', type=int,
                        default=0,
                        help='')
    parser.add_argument('--is-ablation', type=bool,
                        default=False,
                        help='')
    args = parser.parse_args()

    torch.multiprocessing.set_start_method('spawn')

    # PATH variables
    PATH = os.path.dirname(os.path.abspath(__file__)) + '/'
    dataset = PATH + 'dataset/'
    os.makedirs(os.path.join(PATH, 'experiments'), exist_ok=True)
    os.makedirs(os.path.join(PATH, 'experiments/perturbations'), exist_ok=True)

    exp_name = args.method
    exp_name += '_neg' if args.neg else '_pos'
    print(exp_name)

    if args.vis_class == 'index':
        args.runs_dir = os.path.join(PATH, 'experiments/perturbations/{}/{}_{}'.format(exp_name,
                                                                                       args.vis_class,
                                                                                       args.class_id))
    else:
        ablation_fold = 'ablation' if args.is_ablation else 'not_ablation'
        args.runs_dir = os.path.join(PATH, 'experiments/perturbations/{}/{}/{}'.format(exp_name,
                                                                                    args.vis_class, ablation_fold))
        # args.runs_dir = os.path.join(PATH, 'experiments/perturbations/{}/{}'.format(exp_name,
        #                                                                             args.vis_class))

    if args.wrong:
        args.runs_dir += '_wrong'

    experiments = sorted(glob.glob(os.path.join(args.runs_dir, 'experiment_*')))
    experiment_id = int(experiments[-1].split('_')[-1]) + 1 if experiments else 0
    args.experiment_dir = os.path.join(args.runs_dir, 'experiment_{}'.format(str(experiment_id)))
    os.makedirs(args.experiment_dir, exist_ok=True)

    cuda = torch.cuda.is_available()
    device = torch.device("cuda" if cuda else "cpu")

    if args.vis_class == 'index':
        vis_method_dir = os.path.join(PATH,'visualizations/{}/{}_{}'.format(args.method,
                                                          args.vis_class,
                                                          args.class_id))
    else:
        ablation_fold = 'ablation' if args.is_ablation else 'not_ablation'
        vis_method_dir = os.path.join(PATH,'visualizations/{}/{}/{}'.format(args.method,
                                                       args.vis_class, ablation_fold))
        # vis_method_dir = os.path.join(PATH, 'visualizations/{}/{}'.format(args.method,
        #                                                                      args.vis_class))

    # imagenet_ds = ImagenetResults('visualizations/{}'.format(args.method))
    imagenet_ds = ImagenetResults(vis_method_dir)

    # Model
    model = vit_base_patch16_224(pretrained=True).cuda()
    model.eval()

    save_path = PATH + 'results/'

    sample_loader = torch.utils.data.DataLoader(
        imagenet_ds,
        batch_size=args.batch_size,
        num_workers=2,
        shuffle=False)

    eval(args)