File size: 11,656 Bytes
3d27aee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import numpy as np
import torch
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from numpy import *
import argparse
from PIL import Image
import imageio
import os
from tqdm import tqdm
from utils.metrices import *

from utils import render
from utils.saver import Saver
from utils.iou import IoU

from data.Imagenet import Imagenet_Segmentation

from ViT_explanation_generator import Baselines, LRP
from ViT_new import vit_base_patch16_224
from ViT_LRP import vit_base_patch16_224 as vit_LRP
from ViT_orig_LRP import vit_base_patch16_224 as vit_orig_LRP

from sklearn.metrics import precision_recall_curve
import matplotlib.pyplot as plt

import torch.nn.functional as F

plt.switch_backend('agg')


# hyperparameters
num_workers = 0
batch_size = 1

cls = ['airplane',
       'bicycle',
       'bird',
       'boat',
       'bottle',
       'bus',
       'car',
       'cat',
       'chair',
       'cow',
       'dining table',
       'dog',
       'horse',
       'motobike',
       'person',
       'potted plant',
       'sheep',
       'sofa',
       'train',
       'tv'
       ]

# Args
parser = argparse.ArgumentParser(description='Training multi-class classifier')
parser.add_argument('--arc', type=str, default='vgg', metavar='N',
                    help='Model architecture')
parser.add_argument('--train_dataset', type=str, default='imagenet', metavar='N',
                    help='Testing Dataset')
parser.add_argument('--method', type=str,
                    default='grad_rollout',
                    choices=[ 'rollout', 'lrp','transformer_attribution', 'full_lrp', 'lrp_last_layer',
                              'attn_last_layer', 'attn_gradcam'],
                    help='')
parser.add_argument('--thr', type=float, default=0.,
                    help='threshold')
parser.add_argument('--K', type=int, default=1,
                    help='new - top K results')
parser.add_argument('--save-img', action='store_true',
                    default=False,
                    help='')
parser.add_argument('--no-ia', action='store_true',
                    default=False,
                    help='')
parser.add_argument('--no-fx', action='store_true',
                    default=False,
                    help='')
parser.add_argument('--no-fgx', action='store_true',
                    default=False,
                    help='')
parser.add_argument('--no-m', action='store_true',
                    default=False,
                    help='')
parser.add_argument('--no-reg', action='store_true',
                    default=False,
                    help='')
parser.add_argument('--is-ablation', type=bool,
                    default=False,
                    help='')
parser.add_argument('--imagenet-seg-path', type=str, required=True)
args = parser.parse_args()

args.checkname = args.method + '_' + args.arc

alpha = 2

cuda = torch.cuda.is_available()
device = torch.device("cuda" if cuda else "cpu")

# Define Saver
saver = Saver(args)
saver.results_dir = os.path.join(saver.experiment_dir, 'results')
if not os.path.exists(saver.results_dir):
    os.makedirs(saver.results_dir)
if not os.path.exists(os.path.join(saver.results_dir, 'input')):
    os.makedirs(os.path.join(saver.results_dir, 'input'))
if not os.path.exists(os.path.join(saver.results_dir, 'explain')):
    os.makedirs(os.path.join(saver.results_dir, 'explain'))

args.exp_img_path = os.path.join(saver.results_dir, 'explain/img')
if not os.path.exists(args.exp_img_path):
    os.makedirs(args.exp_img_path)
args.exp_np_path = os.path.join(saver.results_dir, 'explain/np')
if not os.path.exists(args.exp_np_path):
    os.makedirs(args.exp_np_path)

# Data
normalize = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
test_img_trans = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    normalize,
])
test_lbl_trans = transforms.Compose([
    transforms.Resize((224, 224), Image.NEAREST),
])

ds = Imagenet_Segmentation(args.imagenet_seg_path,
                           transform=test_img_trans, target_transform=test_lbl_trans)
dl = DataLoader(ds, batch_size=batch_size, shuffle=False, num_workers=1, drop_last=False)

# Model
model = vit_base_patch16_224(pretrained=True).cuda()
baselines = Baselines(model)

# LRP
model_LRP = vit_LRP(pretrained=True).cuda()
model_LRP.eval()
lrp = LRP(model_LRP)

# orig LRP
model_orig_LRP = vit_orig_LRP(pretrained=True).cuda()
model_orig_LRP.eval()
orig_lrp = LRP(model_orig_LRP)

metric = IoU(2, ignore_index=-1)

iterator = tqdm(dl)

model.eval()


def compute_pred(output):
    pred = output.data.max(1, keepdim=True)[1]  # get the index of the max log-probability
    # pred[0, 0] = 282
    # print('Pred cls : ' + str(pred))
    T = pred.squeeze().cpu().numpy()
    T = np.expand_dims(T, 0)
    T = (T[:, np.newaxis] == np.arange(1000)) * 1.0
    T = torch.from_numpy(T).type(torch.FloatTensor)
    Tt = T.cuda()

    return Tt


def eval_batch(image, labels, evaluator, index):
    evaluator.zero_grad()
    # Save input image
    if args.save_img:
        img = image[0].permute(1, 2, 0).data.cpu().numpy()
        img = 255 * (img - img.min()) / (img.max() - img.min())
        img = img.astype('uint8')
        Image.fromarray(img, 'RGB').save(os.path.join(saver.results_dir, 'input/{}_input.png'.format(index)))
        Image.fromarray((labels.repeat(3, 1, 1).permute(1, 2, 0).data.cpu().numpy() * 255).astype('uint8'), 'RGB').save(
            os.path.join(saver.results_dir, 'input/{}_mask.png'.format(index)))

    image.requires_grad = True

    image = image.requires_grad_()
    predictions = evaluator(image)
    
    # segmentation test for the rollout baseline
    if args.method == 'rollout':
        Res = baselines.generate_rollout(image.cuda(), start_layer=1).reshape(batch_size, 1, 14, 14)
    
    # segmentation test for the LRP baseline (this is full LRP, not partial)
    elif args.method == 'full_lrp':
        Res = orig_lrp.generate_LRP(image.cuda(), method="full").reshape(batch_size, 1, 224, 224)
    
    # segmentation test for our method
    elif args.method == 'transformer_attribution':
        Res = lrp.generate_LRP(image.cuda(), start_layer=1, method="transformer_attribution").reshape(batch_size, 1, 14, 14)
    
    # segmentation test for the partial LRP baseline (last attn layer)
    elif args.method == 'lrp_last_layer':
        Res = orig_lrp.generate_LRP(image.cuda(), method="last_layer", is_ablation=args.is_ablation)\
            .reshape(batch_size, 1, 14, 14)
    
    # segmentation test for the raw attention baseline (last attn layer)
    elif args.method == 'attn_last_layer':
        Res = orig_lrp.generate_LRP(image.cuda(), method="last_layer_attn", is_ablation=args.is_ablation)\
            .reshape(batch_size, 1, 14, 14)
    
    # segmentation test for the GradCam baseline (last attn layer)
    elif args.method == 'attn_gradcam':
        Res = baselines.generate_cam_attn(image.cuda()).reshape(batch_size, 1, 14, 14)

    if args.method != 'full_lrp':
        # interpolate to full image size (224,224)
        Res = torch.nn.functional.interpolate(Res, scale_factor=16, mode='bilinear').cuda()
    
    # threshold between FG and BG is the mean    
    Res = (Res - Res.min()) / (Res.max() - Res.min())

    ret = Res.mean()

    Res_1 = Res.gt(ret).type(Res.type())
    Res_0 = Res.le(ret).type(Res.type())

    Res_1_AP = Res
    Res_0_AP = 1-Res

    Res_1[Res_1 != Res_1] = 0
    Res_0[Res_0 != Res_0] = 0
    Res_1_AP[Res_1_AP != Res_1_AP] = 0
    Res_0_AP[Res_0_AP != Res_0_AP] = 0


    # TEST
    pred = Res.clamp(min=args.thr) / Res.max()
    pred = pred.view(-1).data.cpu().numpy()
    target = labels.view(-1).data.cpu().numpy()
    # print("target", target.shape)

    output = torch.cat((Res_0, Res_1), 1)
    output_AP = torch.cat((Res_0_AP, Res_1_AP), 1)

    if args.save_img:
        # Save predicted mask
        mask = F.interpolate(Res_1, [64, 64], mode='bilinear')
        mask = mask[0].squeeze().data.cpu().numpy()
        # mask = Res_1[0].squeeze().data.cpu().numpy()
        mask = 255 * mask
        mask = mask.astype('uint8')
        imageio.imsave(os.path.join(args.exp_img_path, 'mask_' + str(index) + '.jpg'), mask)

        relevance = F.interpolate(Res, [64, 64], mode='bilinear')
        relevance = relevance[0].permute(1, 2, 0).data.cpu().numpy()
        # relevance = Res[0].permute(1, 2, 0).data.cpu().numpy()
        hm = np.sum(relevance, axis=-1)
        maps = (render.hm_to_rgb(hm, scaling=3, sigma=1, cmap='seismic') * 255).astype(np.uint8)
        imageio.imsave(os.path.join(args.exp_img_path, 'heatmap_' + str(index) + '.jpg'), maps)

    # Evaluate Segmentation
    batch_inter, batch_union, batch_correct, batch_label = 0, 0, 0, 0
    batch_ap, batch_f1 = 0, 0

    # Segmentation resutls
    correct, labeled = batch_pix_accuracy(output[0].data.cpu(), labels[0])
    inter, union = batch_intersection_union(output[0].data.cpu(), labels[0], 2)
    batch_correct += correct
    batch_label += labeled
    batch_inter += inter
    batch_union += union
    # print("output", output.shape)
    # print("ap labels", labels.shape)
    # ap = np.nan_to_num(get_ap_scores(output, labels))
    ap = np.nan_to_num(get_ap_scores(output_AP, labels))
    f1 = np.nan_to_num(get_f1_scores(output[0, 1].data.cpu(), labels[0]))
    batch_ap += ap
    batch_f1 += f1

    return batch_correct, batch_label, batch_inter, batch_union, batch_ap, batch_f1, pred, target


total_inter, total_union, total_correct, total_label = np.int64(0), np.int64(0), np.int64(0), np.int64(0)
total_ap, total_f1 = [], []

predictions, targets = [], []
for batch_idx, (image, labels) in enumerate(iterator):

    if args.method == "blur":
        images = (image[0].cuda(), image[1].cuda())
    else:
        images = image.cuda()
    labels = labels.cuda()
    # print("image", image.shape)
    # print("lables", labels.shape)

    correct, labeled, inter, union, ap, f1, pred, target = eval_batch(images, labels, model, batch_idx)

    predictions.append(pred)
    targets.append(target)

    total_correct += correct.astype('int64')
    total_label += labeled.astype('int64')
    total_inter += inter.astype('int64')
    total_union += union.astype('int64')
    total_ap += [ap]
    total_f1 += [f1]
    pixAcc = np.float64(1.0) * total_correct / (np.spacing(1, dtype=np.float64) + total_label)
    IoU = np.float64(1.0) * total_inter / (np.spacing(1, dtype=np.float64) + total_union)
    mIoU = IoU.mean()
    mAp = np.mean(total_ap)
    mF1 = np.mean(total_f1)
    iterator.set_description('pixAcc: %.4f, mIoU: %.4f, mAP: %.4f, mF1: %.4f' % (pixAcc, mIoU, mAp, mF1))

predictions = np.concatenate(predictions)
targets = np.concatenate(targets)
pr, rc, thr = precision_recall_curve(targets, predictions)
np.save(os.path.join(saver.experiment_dir, 'precision.npy'), pr)
np.save(os.path.join(saver.experiment_dir, 'recall.npy'), rc)

plt.figure()
plt.plot(rc, pr)
plt.savefig(os.path.join(saver.experiment_dir, 'PR_curve_{}.png'.format(args.method)))

txtfile = os.path.join(saver.experiment_dir, 'result_mIoU_%.4f.txt' % mIoU)
# txtfile = 'result_mIoU_%.4f.txt' % mIoU
fh = open(txtfile, 'w')
print("Mean IoU over %d classes: %.4f\n" % (2, mIoU))
print("Pixel-wise Accuracy: %2.2f%%\n" % (pixAcc * 100))
print("Mean AP over %d classes: %.4f\n" % (2, mAp))
print("Mean F1 over %d classes: %.4f\n" % (2, mF1))

fh.write("Mean IoU over %d classes: %.4f\n" % (2, mIoU))
fh.write("Pixel-wise Accuracy: %2.2f%%\n" % (pixAcc * 100))
fh.write("Mean AP over %d classes: %.4f\n" % (2, mAp))
fh.write("Mean F1 over %d classes: %.4f\n" % (2, mF1))
fh.close()