Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,15 +8,28 @@ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
|
8 |
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
9 |
|
10 |
@spaces.GPU(duration=120)
|
11 |
-
def predict(message, history):
|
12 |
history.append({"role": "user", "content": message})
|
13 |
input_text = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True)
|
14 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
15 |
-
outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
decoded = tokenizer.decode(outputs[0])
|
17 |
response = decoded.split("<|assistant|>")[-1]
|
18 |
return response
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
demo.launch()
|
|
|
8 |
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
9 |
|
10 |
@spaces.GPU(duration=120)
|
11 |
+
def predict(message, history, temperature, top_p):
|
12 |
history.append({"role": "user", "content": message})
|
13 |
input_text = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True)
|
14 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
15 |
+
outputs = model.generate(
|
16 |
+
inputs,
|
17 |
+
max_new_tokens=1024,
|
18 |
+
temperature=temperature,
|
19 |
+
top_p=top_p,
|
20 |
+
do_sample=True
|
21 |
+
)
|
22 |
decoded = tokenizer.decode(outputs[0])
|
23 |
response = decoded.split("<|assistant|>")[-1]
|
24 |
return response
|
25 |
|
26 |
+
with gr.Blocks() as demo:
|
27 |
+
chatbot = gr.ChatInterface(
|
28 |
+
predict,
|
29 |
+
additional_inputs=[
|
30 |
+
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
31 |
+
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
|
32 |
+
]
|
33 |
+
)
|
34 |
|
35 |
demo.launch()
|