import pandas as pd import os from models.loan_model import LoanApprovalModel def test_trained_model(): # Check if model exists model_path = 'models/loan_model.joblib' if not os.path.exists(model_path): print(f"Error: Trained model not found at {model_path}") print("Please run 'python src/train_model.py' first to train the model") return # Load the trained model print(f"Loading trained model from {model_path}...") model = LoanApprovalModel.load(model_path) # Print available categories for categorical features print("\nAvailable categories in the trained model:") for col, encoder in model.label_encoders.items(): print(f"{col}: {list(encoder.classes_)}") # Test with a good application (likely to be approved) good_application = { 'no_of_dependents': 2, 'education': ' Graduate', # Note the space before Graduate to match dataset format 'self_employed': ' No', # Note the space before No to match dataset format 'income_annum': 8000000, 'loan_amount': 15000000, 'loan_term': 10, 'cibil_score': 750, 'residential_assets_value': 10000000, 'commercial_assets_value': 5000000, 'luxury_assets_value': 20000000, 'bank_asset_value': 7000000 } # Test with a risky application (likely to be rejected) risky_application = { 'no_of_dependents': 5, 'education': ' Not Graduate', # Note the space before Not Graduate 'self_employed': ' Yes', # Note the space before Yes 'income_annum': 2000000, 'loan_amount': 15000000, 'loan_term': 20, 'cibil_score': 350, 'residential_assets_value': 2000000, 'commercial_assets_value': 1000000, 'luxury_assets_value': 5000000, 'bank_asset_value': 1000000 } # Make predictions print("\nTesting with a good application:") good_result = model.predict(good_application) print(f"Prediction: {'Approved' if good_result['prediction'] == 1 else 'Rejected'}") print(f"Confidence: {good_result['probability']:.2%}") print(f"Explanation: {good_result['explanation']['text']}") print("\nTop 3 factors:") for i, factor in enumerate(good_result['feature_importance'][:3]): print(f"{i+1}. {factor['feature']}: {factor['importance']:.4f}") print("\nTesting with a risky application:") risky_result = model.predict(risky_application) print(f"Prediction: {'Approved' if risky_result['prediction'] == 1 else 'Rejected'}") print(f"Confidence: {risky_result['probability']:.2%}") print(f"Explanation: {risky_result['explanation']['text']}") print("\nTop 3 factors:") for i, factor in enumerate(risky_result['feature_importance'][:3]): print(f"{i+1}. {factor['feature']}: {factor['importance']:.4f}") if __name__ == "__main__": test_trained_model()