Spaces:
Sleeping
Sleeping
Update src/api/loan_model.py
Browse files- src/api/loan_model.py +272 -287
src/api/loan_model.py
CHANGED
@@ -1,288 +1,273 @@
|
|
1 |
-
import os
|
2 |
-
import joblib
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
from sklearn.ensemble import RandomForestClassifier
|
6 |
-
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
7 |
-
import shap
|
8 |
-
import logging
|
9 |
-
from typing import Dict, Any, List, Optional, Tuple
|
10 |
-
|
11 |
-
# Configure logging
|
12 |
-
logging.basicConfig(
|
13 |
-
level=logging.INFO,
|
14 |
-
format='%(asctime)s - %(levelname)s - %(message)s'
|
15 |
-
)
|
16 |
-
logger = logging.getLogger(__name__)
|
17 |
-
|
18 |
-
class LoanApprovalModel:
|
19 |
-
"""Loan approval model for predicting loan application outcomes."""
|
20 |
-
|
21 |
-
def __init__(self, model_dir: str = "models", load_model: bool = True):
|
22 |
-
"""Initialize the loan approval model.
|
23 |
-
|
24 |
-
Args:
|
25 |
-
model_dir (str): Directory containing the trained model components
|
26 |
-
load_model (bool): Whether to load existing model components
|
27 |
-
"""
|
28 |
-
self.model_dir = model_dir
|
29 |
-
self.model = None
|
30 |
-
self.scaler = StandardScaler()
|
31 |
-
self.feature_names = None
|
32 |
-
self.explainer = None
|
33 |
-
|
34 |
-
# Initialize label encoders for categorical columns
|
35 |
-
self.categorical_columns = ['education', 'self_employed']
|
36 |
-
self.label_encoders = {}
|
37 |
-
for col in self.categorical_columns:
|
38 |
-
self.label_encoders[col] = LabelEncoder()
|
39 |
-
|
40 |
-
# Load model components if requested
|
41 |
-
if load_model:
|
42 |
-
self.load_components()
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
try:
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
os.
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
'
|
170 |
-
'
|
171 |
-
|
172 |
-
]
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
#
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
#
|
272 |
-
if hasattr(self
|
273 |
-
# Return the feature importances as a list
|
274 |
-
return self.model.feature_importances_.tolist()
|
275 |
-
elif hasattr(self.model, 'coef_'):
|
276 |
-
# For linear models, use coefficients as importance
|
277 |
-
return np.abs(self.model.coef_[0]).tolist()
|
278 |
-
else:
|
279 |
-
# Create dummy feature importance if not available
|
280 |
-
print("Feature importance not available in model, returning dummy values")
|
281 |
-
# Create dummy values for each feature
|
282 |
-
feature_count = len(self.feature_names) if hasattr(self, 'feature_names') else 10
|
283 |
-
return [0.1] * feature_count
|
284 |
-
except Exception as e:
|
285 |
-
print(f"Error getting feature importance: {str(e)}")
|
286 |
-
# Return dummy values as fallback
|
287 |
-
feature_count = len(self.feature_names) if hasattr(self, 'feature_names') else 10
|
288 |
return [0.1] * feature_count
|
|
|
1 |
+
import os
|
2 |
+
import joblib
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.ensemble import RandomForestClassifier
|
6 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
7 |
+
import shap
|
8 |
+
import logging
|
9 |
+
from typing import Dict, Any, List, Optional, Tuple
|
10 |
+
|
11 |
+
# Configure logging
|
12 |
+
logging.basicConfig(
|
13 |
+
level=logging.INFO,
|
14 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
15 |
+
)
|
16 |
+
logger = logging.getLogger(__name__)
|
17 |
+
|
18 |
+
class LoanApprovalModel:
|
19 |
+
"""Loan approval model for predicting loan application outcomes."""
|
20 |
+
|
21 |
+
def __init__(self, model_dir: str = "models", load_model: bool = True):
|
22 |
+
"""Initialize the loan approval model.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
model_dir (str): Directory containing the trained model components
|
26 |
+
load_model (bool): Whether to load existing model components
|
27 |
+
"""
|
28 |
+
self.model_dir = model_dir
|
29 |
+
self.model = None
|
30 |
+
self.scaler = StandardScaler()
|
31 |
+
self.feature_names = None
|
32 |
+
self.explainer = None
|
33 |
+
|
34 |
+
# Initialize label encoders for categorical columns
|
35 |
+
self.categorical_columns = ['education', 'self_employed']
|
36 |
+
self.label_encoders = {}
|
37 |
+
for col in self.categorical_columns:
|
38 |
+
self.label_encoders[col] = LabelEncoder()
|
39 |
+
|
40 |
+
# Load model components if requested
|
41 |
+
if load_model:
|
42 |
+
self.load_components()
|
43 |
+
|
44 |
+
# Add this to your load_components method
|
45 |
+
def load_components(self):
|
46 |
+
try:
|
47 |
+
# Original loading code
|
48 |
+
self.model = joblib.load(self.model_path)
|
49 |
+
self.scaler = joblib.load(self.scaler_path)
|
50 |
+
|
51 |
+
# Try to load the explainer with error handling
|
52 |
+
try:
|
53 |
+
explainer_path = os.path.join(self.model_dir, 'loan_explainer.pkl')
|
54 |
+
if os.path.exists(explainer_path):
|
55 |
+
self.explainer = joblib.load(explainer_path)
|
56 |
+
else:
|
57 |
+
self.explainer = None
|
58 |
+
logger.warning("Explainer file not found. Explanations will be limited.")
|
59 |
+
except Exception as explainer_error:
|
60 |
+
logger.error(f"Error loading explainer: {str(explainer_error)}")
|
61 |
+
self.explainer = None
|
62 |
+
logger.warning("Continuing without explainer. Explanations will be limited.")
|
63 |
+
|
64 |
+
logger.info("Model components loaded successfully")
|
65 |
+
except Exception as e:
|
66 |
+
logger.error(f"Error loading model components: {str(e)}")
|
67 |
+
raise ValueError(f"Failed to load model components: {str(e)}")
|
68 |
+
|
69 |
+
def save(self, output_dir: str = "models") -> None:
|
70 |
+
"""Save model components to disk.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
output_dir (str): Directory to save model components
|
74 |
+
"""
|
75 |
+
try:
|
76 |
+
os.makedirs(output_dir, exist_ok=True)
|
77 |
+
|
78 |
+
# Save model
|
79 |
+
model_path = os.path.join(output_dir, "loan_model.joblib")
|
80 |
+
joblib.dump(self.model, model_path)
|
81 |
+
|
82 |
+
# Save scaler
|
83 |
+
scaler_path = os.path.join(output_dir, "loan_scaler.joblib")
|
84 |
+
joblib.dump(self.scaler, scaler_path)
|
85 |
+
|
86 |
+
# Save label encoders
|
87 |
+
encoders_path = os.path.join(output_dir, "loan_label_encoders.joblib")
|
88 |
+
joblib.dump(self.label_encoders, encoders_path)
|
89 |
+
|
90 |
+
# Save feature names
|
91 |
+
features_path = os.path.join(output_dir, "loan_feature_names.joblib")
|
92 |
+
joblib.dump(self.feature_names, features_path)
|
93 |
+
|
94 |
+
# Save explainer if available
|
95 |
+
if self.explainer is not None:
|
96 |
+
explainer_path = os.path.join(output_dir, "loan_explainer.joblib")
|
97 |
+
joblib.dump(self.explainer, explainer_path)
|
98 |
+
|
99 |
+
logger.info(f"Model components saved to {output_dir}")
|
100 |
+
|
101 |
+
except Exception as e:
|
102 |
+
logger.error(f"Error saving model components: {str(e)}")
|
103 |
+
raise
|
104 |
+
|
105 |
+
def train(self, X: pd.DataFrame, y: pd.Series) -> None:
|
106 |
+
"""Train the loan approval model.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
X (pd.DataFrame): Training features
|
110 |
+
y (pd.Series): Target values
|
111 |
+
"""
|
112 |
+
try:
|
113 |
+
# Store feature names
|
114 |
+
self.feature_names = list(X.columns)
|
115 |
+
|
116 |
+
# Preprocess features
|
117 |
+
X_processed = self._preprocess_features(X, is_training=True)
|
118 |
+
|
119 |
+
# Initialize and train model
|
120 |
+
logger.info("Training RandomForestClassifier...")
|
121 |
+
self.model = RandomForestClassifier(
|
122 |
+
n_estimators=200,
|
123 |
+
max_depth=10,
|
124 |
+
min_samples_split=5,
|
125 |
+
min_samples_leaf=2,
|
126 |
+
random_state=42
|
127 |
+
)
|
128 |
+
|
129 |
+
# Fit the model
|
130 |
+
self.model.fit(X_processed, y)
|
131 |
+
|
132 |
+
# Initialize SHAP explainer
|
133 |
+
logger.info("Initializing SHAP explainer...")
|
134 |
+
self.explainer = shap.TreeExplainer(self.model)
|
135 |
+
|
136 |
+
logger.info("Model trained successfully")
|
137 |
+
|
138 |
+
except Exception as e:
|
139 |
+
logger.error(f"Error training model: {str(e)}")
|
140 |
+
raise
|
141 |
+
|
142 |
+
def predict(self, features: Dict[str, Any]) -> Tuple[str, float, Dict[str, float]]:
|
143 |
+
"""Make a prediction for loan approval.
|
144 |
+
|
145 |
+
Args:
|
146 |
+
features (Dict[str, Any]): Input features for prediction
|
147 |
+
|
148 |
+
Returns:
|
149 |
+
Tuple[str, float, Dict[str, float]]: Prediction result, probability, and feature importance
|
150 |
+
"""
|
151 |
+
try:
|
152 |
+
# Validate required features
|
153 |
+
required_features = [
|
154 |
+
'no_of_dependents', 'education', 'self_employed', 'income_annum',
|
155 |
+
'loan_amount', 'loan_term', 'cibil_score', 'residential_assets_value',
|
156 |
+
'commercial_assets_value', 'luxury_assets_value', 'bank_asset_value'
|
157 |
+
]
|
158 |
+
|
159 |
+
missing_features = [f for f in required_features if f not in features]
|
160 |
+
if missing_features:
|
161 |
+
raise ValueError(f"Missing required features: {missing_features}")
|
162 |
+
|
163 |
+
# Calculate derived features
|
164 |
+
features = features.copy() # Create a copy to avoid modifying the input
|
165 |
+
features['debt_to_income'] = features['loan_amount'] / features['income_annum']
|
166 |
+
features['total_assets'] = (
|
167 |
+
features['residential_assets_value'] +
|
168 |
+
features['commercial_assets_value'] +
|
169 |
+
features['luxury_assets_value'] +
|
170 |
+
features['bank_asset_value']
|
171 |
+
)
|
172 |
+
features['asset_to_loan'] = features['total_assets'] / features['loan_amount']
|
173 |
+
|
174 |
+
# Create DataFrame with all required features
|
175 |
+
X = pd.DataFrame([features])
|
176 |
+
|
177 |
+
# Ensure all required features are present
|
178 |
+
required_features = self.feature_names
|
179 |
+
missing_features = set(required_features) - set(X.columns)
|
180 |
+
if missing_features:
|
181 |
+
raise ValueError(f"Missing required features after preprocessing: {missing_features}")
|
182 |
+
|
183 |
+
# Reorder columns to match training data
|
184 |
+
X = X[required_features]
|
185 |
+
|
186 |
+
# Encode categorical features first
|
187 |
+
for feature in ['education', 'self_employed']:
|
188 |
+
try:
|
189 |
+
X[feature] = self.label_encoders[feature].transform(X[feature].astype(str))
|
190 |
+
except Exception as e:
|
191 |
+
raise ValueError(f"Error encoding {feature}: {str(e)}. Valid values are: {self.label_encoders[feature].classes_}")
|
192 |
+
|
193 |
+
# Scale numerical features
|
194 |
+
numerical_features = [f for f in X.columns if f not in ['education', 'self_employed']]
|
195 |
+
X[numerical_features] = self.scaler.transform(X[numerical_features])
|
196 |
+
|
197 |
+
# Make prediction
|
198 |
+
prediction = self.model.predict(X)[0]
|
199 |
+
probability = self.model.predict_proba(X)[0][1] # Probability of approval
|
200 |
+
|
201 |
+
# Calculate feature importance
|
202 |
+
feature_importance = dict(zip(self.feature_names, self.model.feature_importances_))
|
203 |
+
|
204 |
+
# Map prediction to string
|
205 |
+
result = "Approved" if prediction == 1 else "Rejected"
|
206 |
+
|
207 |
+
return result, probability, feature_importance
|
208 |
+
|
209 |
+
except Exception as e:
|
210 |
+
logger.error(f"Error making prediction: {str(e)}")
|
211 |
+
logger.exception("Detailed traceback:")
|
212 |
+
raise
|
213 |
+
|
214 |
+
def _preprocess_features(self, X: pd.DataFrame, is_training: bool = False) -> pd.DataFrame:
|
215 |
+
"""Preprocess features for model training or prediction.
|
216 |
+
|
217 |
+
Args:
|
218 |
+
X (pd.DataFrame): Input features
|
219 |
+
is_training (bool): Whether preprocessing is for training
|
220 |
+
|
221 |
+
Returns:
|
222 |
+
pd.DataFrame: Preprocessed features
|
223 |
+
"""
|
224 |
+
try:
|
225 |
+
# Create copy to avoid modifying original data
|
226 |
+
df = X.copy()
|
227 |
+
|
228 |
+
# Encode categorical variables
|
229 |
+
for col in self.categorical_columns:
|
230 |
+
if col in df.columns:
|
231 |
+
if is_training:
|
232 |
+
df[col] = self.label_encoders[col].fit_transform(df[col])
|
233 |
+
else:
|
234 |
+
df[col] = self.label_encoders[col].transform(df[col])
|
235 |
+
|
236 |
+
# Scale numerical features
|
237 |
+
numerical_features = [f for f in df.columns if f not in self.categorical_columns]
|
238 |
+
if is_training:
|
239 |
+
df[numerical_features] = self.scaler.fit_transform(df[numerical_features])
|
240 |
+
else:
|
241 |
+
df[numerical_features] = self.scaler.transform(df[numerical_features])
|
242 |
+
|
243 |
+
return df
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
logger.error(f"Error preprocessing features: {str(e)}")
|
247 |
+
raise
|
248 |
+
|
249 |
+
def get_feature_importance(self):
|
250 |
+
"""Return feature importance values from the model."""
|
251 |
+
try:
|
252 |
+
if self.model is None:
|
253 |
+
print("Model not loaded, cannot get feature importance")
|
254 |
+
return None
|
255 |
+
|
256 |
+
# For tree-based models like RandomForest, we can get feature importance directly
|
257 |
+
if hasattr(self.model, 'feature_importances_'):
|
258 |
+
# Return the feature importances as a list
|
259 |
+
return self.model.feature_importances_.tolist()
|
260 |
+
elif hasattr(self.model, 'coef_'):
|
261 |
+
# For linear models, use coefficients as importance
|
262 |
+
return np.abs(self.model.coef_[0]).tolist()
|
263 |
+
else:
|
264 |
+
# Create dummy feature importance if not available
|
265 |
+
print("Feature importance not available in model, returning dummy values")
|
266 |
+
# Create dummy values for each feature
|
267 |
+
feature_count = len(self.feature_names) if hasattr(self, 'feature_names') else 10
|
268 |
+
return [0.1] * feature_count
|
269 |
+
except Exception as e:
|
270 |
+
print(f"Error getting feature importance: {str(e)}")
|
271 |
+
# Return dummy values as fallback
|
272 |
+
feature_count = len(self.feature_names) if hasattr(self, 'feature_names') else 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
return [0.1] * feature_count
|