Spaces:
Sleeping
Sleeping
import pandas as pd | |
import numpy as np | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import StandardScaler, OneHotEncoder | |
from sklearn.compose import ColumnTransformer | |
from sklearn.pipeline import Pipeline | |
from sklearn.ensemble import RandomForestClassifier | |
import pickle | |
import os | |
# Get the project root directory | |
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) | |
# Load the dataset | |
data_path = os.path.join(project_root, 'data', 'loan_approval_dataset.csv') | |
print(f"Loading data from: {data_path}") | |
df = pd.read_csv(data_path) | |
# Clean column names (remove leading/trailing spaces) | |
df.columns = df.columns.str.strip() | |
# Clean string values (remove leading/trailing spaces) | |
for col in df.select_dtypes(include=['object']).columns: | |
df[col] = df[col].str.strip() | |
# Identify numerical and categorical columns | |
numerical_features = ['no_of_dependents', 'income_annum', 'loan_amount', 'loan_term', | |
'cibil_score', 'residential_assets_value', 'commercial_assets_value', | |
'luxury_assets_value', 'bank_asset_value'] | |
categorical_features = ['education', 'self_employed'] | |
# Prepare features and target | |
X = df[numerical_features + categorical_features] | |
y = df['loan_status'].map({'Approved': 1, 'Rejected': 0}) | |
# Create preprocessing pipeline | |
numeric_transformer = Pipeline(steps=[ | |
('scaler', StandardScaler()) | |
]) | |
categorical_transformer = Pipeline(steps=[ | |
('onehot', OneHotEncoder(handle_unknown='ignore')) | |
]) | |
preprocessor = ColumnTransformer( | |
transformers=[ | |
('num', numeric_transformer, numerical_features), | |
('cat', categorical_transformer, categorical_features) | |
]) | |
# Create full pipeline | |
model = Pipeline(steps=[ | |
('preprocessor', preprocessor), | |
('classifier', RandomForestClassifier(n_estimators=100, random_state=42)) | |
]) | |
# Split the data | |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) | |
# Fit the model | |
model.fit(X_train, y_train) | |
# Evaluate the model | |
train_score = model.score(X_train, y_train) | |
test_score = model.score(X_test, y_test) | |
print(f"Train accuracy: {train_score:.3f}") | |
print(f"Test accuracy: {test_score:.3f}") | |
# Save the model | |
models_dir = os.path.join(project_root, 'models') | |
os.makedirs(models_dir, exist_ok=True) | |
# Save as pickle file | |
with open(os.path.join(models_dir, 'loan_model.pkl'), 'wb') as f: | |
pickle.dump(model, f) | |
print("Model saved successfully as loan_model.pkl!") |