Synthack-SyntaxSquad / src /api /diabetes_model.py
WickedFaith's picture
Upload 77 files
3efedb0 verified
raw
history blame contribute delete
13.5 kB
import pandas as pd
import numpy as np
import pickle
import os
import sys
import logging
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from typing import List
logger = logging.getLogger(__name__)
class DiabetesModel:
def __init__(self):
self.model = None
self.scaler = None
self.feature_names = None
self.model_metrics = None
# Get the project root directory
self.project_root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
# Set paths for model files
self.model_path = os.path.join(self.project_root, 'models', 'diabetes_model.pkl')
self.feature_names_path = os.path.join(self.project_root, 'models', 'diabetes_feature_names.pkl')
self.model_metrics_path = os.path.join(self.project_root, 'models', 'diabetes_model_metrics.pkl')
# Default feature names if not loaded from file
self.default_feature_names = [
'Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age'
]
# Initialize feature names first
self.feature_names = self.default_feature_names
# Load the model and related files
self.load_model()
def load_model(self):
"""Load the trained model and related files from disk."""
try:
# Try to load feature names first
if os.path.exists(self.feature_names_path):
try:
with open(self.feature_names_path, 'rb') as f:
self.feature_names = pickle.load(f, encoding='latin1')
logger.info("Feature names loaded successfully")
except Exception as e:
logger.warning(f"Error loading feature names: {str(e)}. Using defaults.")
self.feature_names = self.default_feature_names
else:
logger.warning("Feature names file not found, using defaults")
self.feature_names = self.default_feature_names
# Try to load the model
if os.path.exists(self.model_path):
try:
with open(self.model_path, 'rb') as f:
model_data = pickle.load(f, encoding='latin1')
if isinstance(model_data, dict):
self.model = model_data.get('model')
self.scaler = model_data.get('scaler')
if self.model is None or self.scaler is None:
raise ValueError("Model or scaler missing from loaded data")
else:
self.model = model_data
# Create a new scaler if not found in model data
self.scaler = StandardScaler()
logger.warning("Model loaded but scaler not found. Creating new scaler.")
logger.info("Model loaded successfully")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise ValueError(f"Failed to load diabetes model: {str(e)}")
else:
logger.error("Model file not found.")
raise FileNotFoundError(f"Diabetes model file not found at {self.model_path}")
# Try to load model metrics
if os.path.exists(self.model_metrics_path):
try:
with open(self.model_metrics_path, 'rb') as f:
self.model_metrics = pickle.load(f, encoding='latin1')
logger.info("Model metrics loaded successfully")
except Exception as e:
logger.warning(f"Error loading model metrics: {str(e)}")
self.model_metrics = None
else:
logger.warning("Model metrics file not found")
self.model_metrics = None
except Exception as e:
logger.error(f"Error in load_model: {str(e)}")
raise ValueError(f"Failed to load diabetes model: {str(e)}")
# Remove the _create_dummy_model method entirely
def _create_dummy_model(self):
"""Create a dummy model for testing purposes."""
try:
logger.warning("Creating dummy model")
self.model = RandomForestClassifier(n_estimators=100, random_state=42)
self.scaler = StandardScaler()
# Create dummy data to fit the scaler and model
dummy_data = pd.DataFrame(np.random.randn(100, len(self.feature_names)),
columns=self.feature_names)
self.scaler.fit(dummy_data)
# Fit the model with dummy data
dummy_target = np.random.randint(0, 2, 100)
self.model.fit(dummy_data, dummy_target)
logger.info("Dummy model created successfully")
except Exception as e:
logger.error(f"Error creating dummy model: {str(e)}")
raise
def save_model(self):
"""Save the model and scaler together in one file."""
try:
# Create a dictionary containing both model and scaler
model_data = {
'model': self.model,
'scaler': self.scaler
}
# Save to file
with open(self.model_path, 'wb') as f:
pickle.dump(model_data, f)
logger.info("Model and scaler saved successfully")
except Exception as e:
logger.error(f"Error saving model: {str(e)}")
raise
def predict(self, features):
"""Make a prediction using the trained model."""
try:
if self.model is None:
raise ValueError("Model not loaded. Please ensure model file exists and is valid.")
print(f"Input features for diabetes prediction: {features}")
# Convert string inputs to appropriate numeric types
processed_features = {}
for key, value in features.items():
try:
processed_features[key] = float(value)
except (ValueError, TypeError):
# Handle conversion errors
raise ValueError(f"Invalid value for feature {key}: {value}. Expected numeric value.")
# Create DataFrame with processed values
X = pd.DataFrame([processed_features])
# Ensure all required columns are present
required_columns = [
'Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age'
]
for col in required_columns:
if col not in X.columns:
raise ValueError(f"Missing required feature: {col}")
# Ensure columns are in the correct order
X = X[required_columns]
# Convert all data to float64 to ensure compatibility
X = X.astype(float)
# Scale features if scaler is available
if hasattr(self, 'scaler') and self.scaler is not None:
X_scaled = self.scaler.transform(X)
else:
X_scaled = X.values
# Make prediction
prediction = bool(self.model.predict(X_scaled)[0])
# Get probability - handle different model types
if hasattr(self.model, 'predict_proba'):
# For models that provide probability
proba = self.model.predict_proba(X_scaled)[0]
# Make sure we get the probability for the positive class (index 1)
probability = float(proba[1]) if len(proba) > 1 else float(proba[0])
else:
# For models that don't provide probability
probability = 0.5 + (float(self.model.decision_function(X_scaled)[0]) / 10)
probability = max(0, min(1, probability)) # Clamp between 0 and 1
return {
"prediction": prediction,
"probability": probability
}
except Exception as e:
import traceback
traceback.print_exc()
raise ValueError(f"Error during prediction: {str(e)}")
def get_feature_importance(self) -> List[float]:
"""Get the feature importance scores as a list of floats."""
try:
if hasattr(self.model, 'feature_importances_'):
# Convert feature importances to a list of floats
importances = [float(x) for x in self.model.feature_importances_]
# Ensure we have the same number of importances as features
if len(importances) == len(self.feature_names):
return importances
# If we can't get valid feature importances, return None
logger.warning("Could not get valid feature importances")
return None
except Exception as e:
logger.error(f"Error getting feature importance: {str(e)}")
return None
def get_model_metrics(self):
"""Get the model metrics."""
return self.model_metrics if self.model_metrics else None
def train_model(self, X, y):
"""Train the model with the given data."""
try:
logger.info("Starting model training...")
# Initialize the scaler and scale the features
self.scaler = StandardScaler()
X_scaled = self.scaler.fit_transform(X)
# Initialize and train the model
self.model = RandomForestClassifier(
n_estimators=100,
max_depth=10,
random_state=42
)
self.model.fit(X_scaled, y)
# Calculate and store model metrics
train_score = self.model.score(X_scaled, y)
feature_importance = self.model.feature_importances_
self.model_metrics = {
'train_score': train_score,
'feature_importance': feature_importance.tolist()
}
# Save the model, scaler, and metrics
self.save_model()
self.save_metrics()
self.save_feature_names()
logger.info(f"Model trained successfully. Training score: {train_score:.4f}")
return True
except Exception as e:
logger.error(f"Error in train_model: {str(e)}")
raise
def save_metrics(self):
"""Save model metrics to file."""
try:
with open(self.model_metrics_path, 'wb') as f:
pickle.dump(self.model_metrics, f)
logger.info("Model metrics saved successfully")
except Exception as e:
logger.error(f"Error saving model metrics: {str(e)}")
raise
def save_feature_names(self):
"""Save feature names to file."""
try:
with open(self.feature_names_path, 'wb') as f:
pickle.dump(self.feature_names, f)
logger.info("Feature names saved successfully")
except Exception as e:
logger.error(f"Error saving feature names: {str(e)}")
raise
def train_model():
"""Train and save the diabetes prediction model"""
try:
model = DiabetesModel()
# Get absolute paths
current_dir = os.path.dirname(os.path.abspath(__file__))
project_root = os.path.dirname(os.path.dirname(current_dir))
data_file = os.path.join(project_root, "data", "diabetes.csv")
model_dir = os.path.join(project_root, 'models')
print(f"Loading data from: {data_file}")
print(f"Model will be saved to: {model_dir}")
# Ensure data file exists
if not os.path.exists(data_file):
raise FileNotFoundError(f"Data file not found at {data_file}")
# Create models directory if it doesn't exist
os.makedirs(model_dir, exist_ok=True)
# Load data
print("Loading and preparing data...")
data = pd.read_csv(data_file)
# Select features and target
X = data[model.feature_names]
y = data['Outcome']
# Train the model
print("Training model...")
model.train_model(X, y)
print("Model trained and saved successfully")
except Exception as e:
print(f"Error during model training: {str(e)}")
import traceback
print(traceback.format_exc())
sys.exit(1)
if __name__ == "__main__":
train_model()