Spaces:
Sleeping
Sleeping
File size: 16,852 Bytes
3efedb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import streamlit as st
import requests
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import traceback
def show_liver_disease_prediction():
st.title("Liver Disease Prediction")
# Create sidebar for inputs
with st.sidebar:
st.header("Patient Details")
# Personal Information
st.subheader("Personal Information")
age = st.slider("Age", 10, 90, 45)
gender = st.radio("Gender", ["Male", "Female"])
# Liver Function Tests
st.subheader("Liver Function Tests")
total_bilirubin = st.number_input("Total Bilirubin", min_value=0.1, max_value=100.0, value=1.0, step=0.1,
help="Normal range: 0.3-1.2 mg/dL")
direct_bilirubin = st.number_input("Direct Bilirubin", min_value=0.0, max_value=50.0, value=0.3, step=0.1,
help="Normal range: 0.0-0.3 mg/dL")
# Enzyme Levels
st.subheader("Enzyme Levels")
alkaline_phosphotase = st.number_input("Alkaline Phosphotase", min_value=20, max_value=2000, value=290, step=10,
help="Normal range: 44-147 IU/L")
alamine_aminotransferase = st.number_input("Alamine Aminotransferase (ALT)", min_value=1, max_value=2000, value=40, step=1,
help="Normal range: 7-55 IU/L")
aspartate_aminotransferase = st.number_input("Aspartate Aminotransferase (AST)", min_value=1, max_value=2000, value=40, step=1,
help="Normal range: 8-48 IU/L")
# Protein Levels
st.subheader("Protein Levels")
total_protiens = st.number_input("Total Proteins", min_value=1.0, max_value=10.0, value=6.8, step=0.1,
help="Normal range: 6.0-8.3 g/dL")
albumin = st.number_input("Albumin", min_value=0.5, max_value=10.0, value=3.5, step=0.1,
help="Normal range: 3.5-5.0 g/dL")
albumin_globulin_ratio = st.number_input("Albumin/Globulin Ratio", min_value=0.1, max_value=5.0, value=1.0, step=0.1,
help="Normal range: 0.8-2.0")
# Submit button
predict_button = st.button("Predict Liver Disease Risk")
# Main content area
if predict_button:
# Prepare data for API
features = {
"Age": age,
"Gender": gender,
"Total_Bilirubin": total_bilirubin,
"Direct_Bilirubin": direct_bilirubin,
"Alkaline_Phosphotase": alkaline_phosphotase,
"Alamine_Aminotransferase": alamine_aminotransferase,
"Aspartate_Aminotransferase": aspartate_aminotransferase,
"Total_Protiens": total_protiens,
"Albumin": albumin,
"Albumin_and_Globulin_Ratio": albumin_globulin_ratio
}
# Call API
with st.spinner("Predicting..."):
try:
response = requests.post(
"http://localhost:8000/predict/liver",
json=features
)
if response.status_code == 200:
result = response.json()
# Display results
col1, col2 = st.columns([3, 2])
with col1:
# Prediction result
if result["prediction"]:
st.error("### High Risk of Liver Disease ⚠️")
st.markdown("The patient shows indicators consistent with potential liver disease.")
else:
st.success("### Low Risk of Liver Disease ✅")
st.markdown("The patient's indicators suggest normal liver function.")
# Enhanced explanation
st.info("### Key Indicators Analysis")
# Create a dataframe to show normal ranges vs patient values
indicators = {
"Indicator": [
"Total Bilirubin",
"Direct Bilirubin",
"Alkaline Phosphotase",
"ALT",
"AST",
"Total Proteins",
"Albumin",
"Albumin/Globulin Ratio"
],
"Patient Value": [
total_bilirubin,
direct_bilirubin,
alkaline_phosphotase,
alamine_aminotransferase,
aspartate_aminotransferase,
total_protiens,
albumin,
albumin_globulin_ratio
],
"Normal Range": [
"0.3-1.2 mg/dL",
"0.0-0.3 mg/dL",
"44-147 IU/L",
"7-55 IU/L",
"8-48 IU/L",
"6.0-8.3 g/dL",
"3.5-5.0 g/dL",
"0.8-2.0"
],
"Status": [
"Normal" if 0.3 <= total_bilirubin <= 1.2 else "Abnormal",
"Normal" if 0.0 <= direct_bilirubin <= 0.3 else "Abnormal",
"Normal" if 44 <= alkaline_phosphotase <= 147 else "Abnormal",
"Normal" if 7 <= alamine_aminotransferase <= 55 else "Abnormal",
"Normal" if 8 <= aspartate_aminotransferase <= 48 else "Abnormal",
"Normal" if 6.0 <= total_protiens <= 8.3 else "Abnormal",
"Normal" if 3.5 <= albumin <= 5.0 else "Abnormal",
"Normal" if 0.8 <= albumin_globulin_ratio <= 2.0 else "Abnormal"
]
}
indicators_df = pd.DataFrame(indicators)
# Style the dataframe
def highlight_abnormal(val):
if val == "Abnormal":
return 'background-color: #ffcccb'
else:
return 'background-color: #90ee90'
styled_df = indicators_df.style.applymap(highlight_abnormal, subset=['Status'])
st.dataframe(styled_df, use_container_width=True)
# Feature importance visualization if available
if "feature_importance" in result and result["feature_importance"]:
st.subheader("Factors Affecting Liver Disease Risk")
# Create feature importance dataframe
feature_names = list(features.keys())
importance_values = result["feature_importance"]
# If lengths don't match, use default values
if len(importance_values) != len(feature_names):
importance_values = [0.15, 0.05, 0.12, 0.08, 0.18, 0.14, 0.10, 0.08, 0.06, 0.04]
importance_df = pd.DataFrame({
"Feature": feature_names,
"Importance": importance_values
})
importance_df = importance_df.sort_values("Importance", ascending=False)
fig = px.bar(
importance_df,
x="Importance",
y="Feature",
orientation='h',
title="Feature Importance",
color="Importance",
color_continuous_scale=["#90ee90", "#ffcccb"]
)
st.plotly_chart(fig, use_container_width=True)
# Recommendations section
st.subheader("Recommendations")
if result["prediction"]:
st.markdown("""
* **Consult a Hepatologist:** Schedule an appointment with a liver specialist for further evaluation
* **Additional Testing:** Consider ultrasound, CT scan, or liver biopsy for definitive diagnosis
* **Lifestyle Changes:**
* Limit alcohol consumption
* Maintain a healthy weight
* Follow a liver-friendly diet low in processed foods and sugar
* Regular exercise
* **Medication Review:** Discuss current medications with your doctor as some may affect liver function
""")
else:
st.markdown("""
* **Regular Check-ups:** Continue routine health screenings
* **Healthy Lifestyle:**
* Maintain a balanced diet rich in fruits, vegetables, and whole grains
* Regular physical activity
* Limit alcohol consumption
* Stay hydrated
* **Liver Protection:** Avoid unnecessary medications that may strain the liver
""")
with col2:
# Risk probability gauge
st.subheader("Disease Risk Probability")
probability = result["probability"]
# Create gauge chart
fig = go.Figure(go.Indicator(
mode="gauge+number",
value=probability * 100,
domain={'x': [0, 1], 'y': [0, 1]},
title={'text': "Risk Level"},
gauge={
'axis': {'range': [0, 100], 'tickwidth': 1},
'bar': {'color': "darkred" if probability > 0.7 else "orange" if probability > 0.3 else "green"},
'steps': [
{'range': [0, 30], 'color': 'rgba(0, 128, 0, 0.3)'},
{'range': [30, 70], 'color': 'rgba(255, 165, 0, 0.3)'},
{'range': [70, 100], 'color': 'rgba(255, 0, 0, 0.3)'}
],
'threshold': {
'line': {'color': "red", 'width': 4},
'thickness': 0.75,
'value': probability * 100
}
}
))
fig.update_layout(
height=300,
margin=dict(l=20, r=20, t=50, b=20)
)
st.plotly_chart(fig, use_container_width=True)
# Risk level explanation
risk_level = "High" if probability > 0.7 else "Moderate" if probability > 0.3 else "Low"
risk_color = "red" if probability > 0.7 else "orange" if probability > 0.3 else "green"
st.markdown(f"<div style='text-align: center; font-size: 24px; font-weight: bold; color: {risk_color};'>{risk_level} Risk</div>", unsafe_allow_html=True)
# Liver health score
st.subheader("Liver Health Indicators")
# Calculate abnormal indicators
abnormal_count = sum(1 for status in indicators["Status"] if status == "Abnormal")
health_score = 100 - (abnormal_count / len(indicators["Status"])) * 100
# Display health score
st.metric(
label="Liver Health Score",
value=f"{health_score:.1f}%",
delta=None
)
# Create progress bar for health score
health_color = "green" if health_score > 70 else "orange" if health_score > 40 else "red"
st.markdown(f"""
<div style="width: 100%; background-color: #ddd; border-radius: 5px;">
<div style="width: {health_score}%; height: 20px; background-color: {health_color}; border-radius: 5px;"></div>
</div>
""", unsafe_allow_html=True)
# Age and gender analysis
st.subheader("Demographic Analysis")
# Age risk factor
age_risk = "Higher" if age > 50 else "Moderate" if age > 35 else "Lower"
age_color = "red" if age > 50 else "orange" if age > 35 else "green"
st.markdown(f"""
<div style="margin-top: 10px;">
<span style="font-weight: bold;">Age Risk Factor:</span>
<span style="color: {age_color};">{age_risk}</span>
</div>
""", unsafe_allow_html=True)
# Gender risk factor
gender_risk = "Higher" if gender == "Male" else "Lower"
gender_color = "orange" if gender == "Male" else "green"
st.markdown(f"""
<div style="margin-top: 10px;">
<span style="font-weight: bold;">Gender Risk Factor:</span>
<span style="color: {gender_color};">{gender_risk}</span>
</div>
<div style="margin-top: 5px; font-size: 12px; color: #888;">
Males typically have higher risk of liver disease than females.
</div>
""", unsafe_allow_html=True)
# Disclaimer
st.info("⚠️ Disclaimer: This prediction is for informational purposes only and should not replace professional medical advice.")
else:
st.error(f"Error: API returned status code {response.status_code}")
try:
error_detail = response.json()
st.error(f"Error details: {error_detail}")
except:
st.error(response.text)
except Exception as e:
st.error(f"Error connecting to API: {str(e)}")
st.error(traceback.format_exc())
st.info("Make sure the FastAPI backend is running with: python -m uvicorn src.api.main:app --reload")
if __name__ == "__main__":
show_liver_disease_prediction() |