Spaces:
Sleeping
Sleeping
File size: 14,872 Bytes
3efedb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import streamlit as st
import pandas as pd
import numpy as np
import pickle
import plotly.graph_objects as go
from PIL import Image
# Load the trained model and related objects
@st.cache_resource
def load_model_and_objects():
try:
with open('diabetes_model.pkl', 'rb') as f:
model = pickle.load(f)
with open('diabetes_feature_names.pkl', 'rb') as f:
feature_names = pickle.load(f)
with open('diabetes_model_metrics.pkl', 'rb') as f:
model_metrics = pickle.load(f)
return model, feature_names, model_metrics
except Exception as e:
st.error(f"Error loading model files: {e}")
return None, None, None
model, feature_names, model_metrics = load_model_and_objects()
# Display header
st.title("🩺 Diabetes Prediction System")
st.markdown("### Enter the patient's information to predict diabetes risk")
# Display model metrics in sidebar
if model_metrics:
st.sidebar.title("Model Information")
st.sidebar.markdown(f"Model Type: {model_metrics.get('model_name', 'Unknown')}")
st.sidebar.markdown(f"Accuracy: {model_metrics.get('testing_accuracy', 0):.2%}")
st.sidebar.markdown(f"AUC: {model_metrics.get('roc_auc', 0):.2%}")
# Show top features as text-based visualization
st.sidebar.title("Key Factors in Diabetes Risk")
try:
top_features = pd.DataFrame(model_metrics['feature_importance'])
top_features = top_features.sort_values('importance', ascending=False).head(5)
# Removed the "Top 5 Important Features" heading
# Get max importance for scaling
max_importance = top_features['importance'].max()
# Feature descriptions
feature_descriptions = {
'Glucose': "Blood glucose level",
'BMI': "Body Mass Index",
'Age': "Patient's age",
'Insulin': "Insulin level in blood",
'DiabetesPedigreeFunction': "Diabetes hereditary factor",
'BloodPressure': "Blood pressure measurement",
'Pregnancies': "Number of pregnancies",
'SkinThickness': "Skin fold thickness"
}
# Add custom CSS for better styling with light blue bars
st.markdown("""
<style>
.feature-importance {
margin-bottom: 12px;
background-color: rgba(49, 51, 63, 0.7);
border-radius: 5px;
padding: 10px;
}
.feature-name {
font-weight: bold;
margin-bottom: 2px;
display: flex;
justify-content: space-between;
}
.feature-description {
font-size: 0.85em;
color: #9e9e9e;
margin-bottom: 5px;
}
.importance-bar {
height: 8px;
background-color: #4682B4; /* Changed to Steel Blue - a light blue shade */
border-radius: 4px;
margin-top: 5px;
}
.importance-value {
color: #9e9e9e;
font-size: 0.9em;
font-weight: normal;
}
</style>
""", unsafe_allow_html=True)
# Create text-based visualization for each feature
for _, row in top_features.iterrows():
feature = row['feature']
importance = row['importance']
percentage = int((importance / max_importance) * 100)
# Get feature description or use a default
description = feature_descriptions.get(feature, "")
# Format feature name for display
display_name = feature.replace('_', ' ').title()
# Special case for DiabetesPedigreeFunction
if feature == 'DiabetesPedigreeFunction':
display_name = "Diabetes Pedigree Function"
st.sidebar.markdown(f"""
<div class="feature-importance">
<div class="feature-name">{display_name} <span class="importance-value">{importance:.3f}</span></div>
<div class="feature-description">{description}</div>
<div class="importance-bar" style="width: {percentage}%;"></div>
</div>
""", unsafe_allow_html=True)
except Exception as e:
st.sidebar.write("Could not display feature importance information.")
# Create input form
with st.form("diabetes_form"):
col1, col2 = st.columns(2)
with col1:
pregnancies = st.number_input("Number of Pregnancies", min_value=0, max_value=20, value=1)
glucose = st.number_input("Glucose Level (mg/dL)", min_value=0, max_value=300, value=120)
blood_pressure = st.number_input("Blood Pressure (mm Hg)", min_value=0, max_value=200, value=70)
skin_thickness = st.number_input("Skin Thickness (mm)", min_value=0, max_value=100, value=20)
with col2:
insulin = st.number_input("Insulin Level (mu U/ml)", min_value=0, max_value=1000, value=80)
bmi = st.number_input("BMI", min_value=0.0, max_value=70.0, value=25.0)
diabetes_pedigree = st.number_input("Diabetes Pedigree Function", min_value=0.0, max_value=3.0, value=0.5,
help="A function that scores likelihood of diabetes based on family history")
age = st.number_input("Age", min_value=0, max_value=120, value=30)
submit_button = st.form_submit_button("Predict Diabetes Risk")
if submit_button and model is not None:
# Create input dataframe with the exact same features used during training
input_data = {
'Pregnancies': pregnancies,
'Glucose': glucose,
'BloodPressure': blood_pressure,
'SkinThickness': skin_thickness,
'Insulin': insulin,
'BMI': bmi,
'DiabetesPedigreeFunction': diabetes_pedigree,
'Age': age
}
# Create DataFrame
input_df = pd.DataFrame([input_data])
# Ensure all required features are present
if feature_names:
# Add any missing features with default values
for feature in feature_names:
if feature not in input_df.columns:
input_df[feature] = 0
# Reorder columns to match training data
input_df = input_df[feature_names]
# Make prediction
try:
# Use the model's predict method directly with the DataFrame
prediction = model.predict(input_df)[0]
prediction_proba = model.predict_proba(input_df)[0]
# Display result
st.subheader("Prediction Result")
if prediction == 1:
st.markdown(f"""
<div class="error-box">
<h3>⚠️ High Risk of Diabetes (Confidence: {prediction_proba[1]:.2%})</h3>
<p>Based on the patient's profile, our model predicts a high risk of diabetes.</p>
</div>
""", unsafe_allow_html=True)
else:
st.markdown(f"""
<div class="success-box">
<h3>✅ Low Risk of Diabetes (Confidence: {prediction_proba[0]:.2%})</h3>
<p>Based on the patient's profile, our model predicts a low risk of diabetes.</p>
</div>
""", unsafe_allow_html=True)
# Display risk factors
st.subheader("Risk Factor Analysis")
# Create a radar chart for risk factors
categories = ['Glucose', 'BMI', 'Age', 'Blood Pressure', 'Insulin', 'Family History']
# Define reference ranges for each category
reference_ranges = {
'Glucose': {'low': 70, 'normal': 99, 'high': 126, 'max': 300},
'BMI': {'low': 18.5, 'normal': 24.9, 'high': 30, 'max': 50},
'Age': {'low': 0, 'normal': 40, 'high': 60, 'max': 100},
'Blood Pressure': {'low': 60, 'normal': 80, 'high': 90, 'max': 200},
'Insulin': {'low': 0, 'normal': 100, 'high': 200, 'max': 1000},
'Family History': {'low': 0, 'normal': 0.5, 'high': 1, 'max': 3}
}
# Normalize values to 0-1 scale for radar chart
normalized_values = [
min(1, max(0, (glucose - reference_ranges['Glucose']['low']) /
(reference_ranges['Glucose']['max'] - reference_ranges['Glucose']['low']))),
min(1, max(0, (bmi - reference_ranges['BMI']['low']) /
(reference_ranges['BMI']['max'] - reference_ranges['BMI']['low']))),
min(1, max(0, (age - reference_ranges['Age']['low']) /
(reference_ranges['Age']['max'] - reference_ranges['Age']['low']))),
min(1, max(0, (blood_pressure - reference_ranges['Blood Pressure']['low']) /
(reference_ranges['Blood Pressure']['max'] - reference_ranges['Blood Pressure']['low']))),
min(1, max(0, (insulin - reference_ranges['Insulin']['low']) /
(reference_ranges['Insulin']['max'] - reference_ranges['Insulin']['low']))),
min(1, max(0, (diabetes_pedigree - reference_ranges['Family History']['low']) /
(reference_ranges['Family History']['max'] - reference_ranges['Family History']['low'])))
]
# Create radar chart
fig = go.Figure()
fig.add_trace(go.Scatterpolar(
r=normalized_values,
theta=categories,
fill='toself',
name='Patient Values',
line_color='indianred'
))
# Add normal range reference
normal_values = [
(reference_ranges['Glucose']['normal'] - reference_ranges['Glucose']['low']) /
(reference_ranges['Glucose']['max'] - reference_ranges['Glucose']['low']),
(reference_ranges['BMI']['normal'] - reference_ranges['BMI']['low']) /
(reference_ranges['BMI']['max'] - reference_ranges['BMI']['low']),
(reference_ranges['Age']['normal'] - reference_ranges['Age']['low']) /
(reference_ranges['Age']['max'] - reference_ranges['Age']['low']),
(reference_ranges['Blood Pressure']['normal'] - reference_ranges['Blood Pressure']['low']) /
(reference_ranges['Blood Pressure']['max'] - reference_ranges['Blood Pressure']['low']),
(reference_ranges['Insulin']['normal'] - reference_ranges['Insulin']['low']) /
(reference_ranges['Insulin']['max'] - reference_ranges['Insulin']['low']),
(reference_ranges['Family History']['normal'] - reference_ranges['Family History']['low']) /
(reference_ranges['Family History']['max'] - reference_ranges['Family History']['low'])
]
fig.add_trace(go.Scatterpolar(
r=normal_values,
theta=categories,
fill='toself',
name='Normal Range',
line_color='lightseagreen',
opacity=0.3
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1]
)
),
showlegend=True,
title="Risk Factor Analysis"
)
st.plotly_chart(fig)
# Display detailed metrics
col1, col2 = st.columns(2)
with col1:
st.markdown("### Key Metrics Analysis")
# Glucose analysis
if glucose < 70:
glucose_status = "Low (Hypoglycemia)"
glucose_color = "blue"
elif glucose < 100:
glucose_status = "Normal"
glucose_color = "green"
elif glucose < 126:
glucose_status = "Prediabetes"
glucose_color = "orange"
else:
glucose_status = "Diabetes range"
glucose_color = "red"
st.markdown(f"Glucose: {glucose} mg/dL - <span style='color:{glucose_color}'>{glucose_status}</span>", unsafe_allow_html=True)
# BMI analysis
if bmi < 18.5:
bmi_status = "Underweight"
bmi_color = "blue"
elif bmi < 25:
bmi_status = "Normal weight"
bmi_color = "green"
elif bmi < 30:
bmi_status = "Overweight"
bmi_color = "orange"
else:
bmi_status = "Obese"
bmi_color = "red"
st.markdown(f"BMI: {bmi:.1f} - <span style='color:{bmi_color}'>{bmi_status}</span>", unsafe_allow_html=True)
# Blood pressure analysis
if blood_pressure < 60:
bp_status = "Low (Hypotension)"
bp_color = "blue"
elif blood_pressure < 80:
bp_status = "Normal"
bp_color = "green"
elif blood_pressure < 90:
bp_status = "Elevated"
bp_color = "orange"
else:
bp_status = "High (Hypertension)"
bp_color = "red"
st.markdown(f"Blood Pressure: {blood_pressure} mm Hg - <span style='color:{bp_color}'>{bp_status}</span>", unsafe_allow_html=True)
with col2:
st.markdown("### Recommendations")
if prediction == 1:
st.markdown("""
- Consult with a healthcare provider for a comprehensive diabetes assessment
- Consider glucose tolerance testing
- Monitor blood glucose levels regularly
- Maintain a healthy diet and regular exercise routine
- Limit sugar and refined carbohydrate intake
""")
else:
st.markdown("""
- Continue maintaining a healthy lifestyle
- Regular check-ups to monitor glucose levels
- Stay physically active
- Maintain a balanced diet
- Consider annual diabetes screening, especially if risk factors are present
""")
except Exception as e:
st.error(f"Error making prediction: {e}")
st.write("Please try again with different values or check if the model is loaded correctly.")
else:
if not model:
st.warning("⚠️ Model not loaded correctly. Please check if all model files are present.") |