WickedFaith commited on
Commit
3bfe76b
·
verified ·
1 Parent(s): 83478b3

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -109
app.py DELETED
@@ -1,109 +0,0 @@
1
-
2
- import pandas as pd
3
- import numpy as np
4
- from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
5
- import matplotlib.pyplot as plt
6
- import seaborn as sns
7
- import pickle
8
- import gradio as gr
9
- import os
10
-
11
- # Load the model
12
- model_path = 'career_prediction_model.pkl'
13
- with open(model_path, 'rb') as f:
14
- saved_data = pickle.load(f)
15
-
16
- model = saved_data['model']
17
- label_encoders = saved_data['label_encoders']
18
- target_encoder = saved_data['target_encoder']
19
- features = saved_data['features']
20
- target = 'What would you like to become when you grow up'
21
-
22
- # Function for individual prediction
23
- def predict_career(work_env, academic_perf, motivation, leadership, tech_savvy, preferred_subjects, gender, risk_taking=5, financial_stability=5, work_exp="No Experience"):
24
- # Prepare input data
25
- input_data = pd.DataFrame({
26
- 'Preferred Work Environment': [work_env],
27
- 'Academic Performance (CGPA/Percentage)': [float(academic_perf)],
28
- 'Motivation for Career Choice ': [motivation], # Note the space at the end
29
- 'Leadership Experience': [leadership],
30
- 'Tech-Savviness': [tech_savvy],
31
- 'Preferred Subjects in Highschool/College': [preferred_subjects], # New feature
32
- 'Gender': [gender], # New feature
33
- 'Risk-Taking Ability ': [float(risk_taking)], # Note the space at the end
34
- 'Financial Stability - self/family (1 is low income and 10 is high income)': [float(financial_stability)],
35
- 'Previous Work Experience (If Any)': [work_exp]
36
- })
37
-
38
- # Encode categorical features
39
- for feature in features:
40
- if feature in input_data.columns:
41
- if feature in label_encoders and input_data[feature].dtype == 'object':
42
- try:
43
- input_data[feature] = label_encoders[feature].transform(input_data[feature])
44
- except ValueError:
45
- # Handle unknown categories
46
- print(f"Warning: Unknown category in {feature}. Using most frequent category.")
47
- input_data[feature] = 0 # Default to first category
48
- else:
49
- print(f"Warning: Feature {feature} not found in input data.")
50
-
51
- # Make prediction
52
- prediction = model.predict(input_data)[0]
53
- predicted_career = target_encoder.inverse_transform([int(prediction)])[0]
54
-
55
- # Get probabilities for all classes
56
- if hasattr(model, 'predict_proba'):
57
- probabilities = model.predict_proba(input_data)[0]
58
- class_probs = {target_encoder.inverse_transform([i])[0]: prob
59
- for i, prob in enumerate(probabilities)}
60
- sorted_probs = dict(sorted(class_probs.items(), key=lambda x: x[1], reverse=True))
61
-
62
- result = f"Predicted career: {predicted_career}\n\nProbabilities:\n"
63
- for career, prob in sorted_probs.items():
64
- result += f"{career}: {prob:.2f}\n"
65
- return result
66
- else:
67
- return f"Predicted career: {predicted_career}"
68
-
69
- # Get unique values for dropdowns
70
- work_env_options = list(label_encoders['Preferred Work Environment'].classes_)
71
- motivation_options = list(label_encoders['Motivation for Career Choice '].classes_)
72
- leadership_options = list(label_encoders['Leadership Experience'].classes_)
73
- tech_savvy_options = list(label_encoders['Tech-Savviness'].classes_)
74
-
75
- # Get options for new features
76
- subject_options = list(label_encoders['Preferred Subjects in Highschool/College'].classes_)
77
- gender_options = list(label_encoders['Gender'].classes_)
78
-
79
- # Get work experience options if available
80
- work_exp_options = []
81
- if 'Previous Work Experience (If Any)' in label_encoders:
82
- work_exp_options = list(label_encoders['Previous Work Experience (If Any)'].classes_)
83
- else:
84
- work_exp_options = ["No Experience", "Internship", "Part Time", "Full Time"]
85
-
86
- # Create the Gradio interface
87
- iface = gr.Interface(
88
- fn=predict_career,
89
- inputs=[
90
- gr.Dropdown(work_env_options, label="Preferred Work Environment"),
91
- gr.Number(label="Academic Performance (CGPA/Percentage)", minimum=0, maximum=10),
92
- gr.Dropdown(motivation_options, label="Motivation for Career Choice"),
93
- gr.Dropdown(leadership_options, label="Leadership Experience"),
94
- gr.Dropdown(tech_savvy_options, label="Tech-Savviness"),
95
- gr.Dropdown(subject_options, label="Preferred Subjects"),
96
- gr.Dropdown(gender_options, label="Gender"),
97
- gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Risk-Taking Ability"),
98
- gr.Slider(minimum=1, maximum=10, step=1, value=5, label="Financial Stability"),
99
- gr.Dropdown(work_exp_options, label="Previous Work Experience")
100
- ],
101
- outputs="text",
102
- title="Career Prediction Model",
103
- description="Enter your details to predict your future career path",
104
- theme="huggingface"
105
- )
106
-
107
- # Launch the interface
108
- if __name__ == "__main__":
109
- iface.launch()