|
import os |
|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from huggingface_hub import snapshot_download, hf_hub_download |
|
|
|
|
|
def setup_model(): |
|
instruct_repo = "Qwen/Qwen2.5-0.5B-Instruct" |
|
local_dir = snapshot_download(repo_id=instruct_repo) |
|
gguf_filename = "qwen2.5-0.5b-instruct-q5_k_m.gguf" |
|
hf_hub_download( |
|
repo_id="Qwen/Qwen2.5-0.5B-Instruct-GGUF", |
|
filename=gguf_filename, |
|
local_dir=local_dir, |
|
local_dir_use_symlinks=False |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(local_dir, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
local_dir, |
|
gguf_file=gguf_filename, |
|
trust_remote_code=True |
|
) |
|
return tokenizer, torch.compile(model) |
|
|
|
tokenizer, model = setup_model() |
|
|
|
|
|
prompt_prefix = """ |
|
You are an energy‑saving expert tasked to help households reduce their monthly electricity bills. |
|
Analyze the following appliance usage data, which is provided in the format "Appliance Name: Wattage, hours/day, days/week". |
|
1. Flag the highest energy consumers. |
|
2. Recommend practical, empathetic, achievable actions. |
|
3. Suggest appliance swaps (e.g. Incandescent to LED, inverter AC) and habit changes. |
|
Provide at most 5 recommendation bullet points and stop there. |
|
Input Data: |
|
""" |
|
|
|
def generate_recommendation(appliance_info: str) -> str: |
|
prompt = prompt_prefix + appliance_info + "\n\nRecommendations:" |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=120, |
|
use_cache=True, |
|
do_sample=False, |
|
temperature=0.0 |
|
) |
|
text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
recommendation = text.split("Recommendations:")[-1].strip() |
|
|
|
lines = recommendation.splitlines() |
|
filtered_lines = [line for line in lines if line.strip() and line.strip()[0].isdigit()][:5] |
|
return "\n".join(filtered_lines) |
|
|
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_recommendation, |
|
inputs=gr.Textbox(lines=10, placeholder="Enter appliance usage details..."), |
|
outputs="text", |
|
title="Energy-Saving Recommendation Generator", |
|
description="Provide appliance usage details to receive energy-saving tips." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |