Spaces:
Running
Running
Upload 6 files
Browse filesIntegrated "Gelbooru Image Fetcher" tab which is a big change, it will help you to find characters and other stuff pretty easy and faster, still working on it, so maybe in the future there will be even more features. Also fixed some other minor stuff and changed the description accordingly. Have fun!
- app.py +640 -592
- modules/booru.py +137 -0
- modules/classifyTags.py +191 -174
app.py
CHANGED
@@ -1,593 +1,641 @@
|
|
1 |
-
import os
|
2 |
-
import io,copy,requests,spaces,gradio as gr,numpy as np
|
3 |
-
from
|
4 |
-
|
5 |
-
from
|
6 |
-
|
7 |
-
from
|
8 |
-
|
9 |
-
from
|
10 |
-
import
|
11 |
-
from modules.
|
12 |
-
from modules.
|
13 |
-
from modules.
|
14 |
-
|
15 |
-
os.environ['PYTORCH_ENABLE_MPS_FALLBACK']='1'
|
16 |
-
|
17 |
-
TITLE = "Multi-Tagger"
|
18 |
-
DESCRIPTION = """
|
19 |
-
Multi-Tagger is a versatile application
|
20 |
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
def
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
self.
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
self.
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
with open(file_path, 'w
|
137 |
-
file.write(content)
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
current_progress
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
#
|
271 |
-
|
272 |
-
|
273 |
-
#
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
image
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
reorganize_strings =
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
"
|
314 |
-
"
|
315 |
-
"
|
316 |
-
"
|
317 |
-
"
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
"
|
351 |
-
"
|
352 |
-
"
|
353 |
-
"
|
354 |
-
"
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
if
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
if not
|
369 |
-
|
370 |
-
|
371 |
-
return gallery
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
scheduler
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
with gr.Row():
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
# Event to
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
inputs=[
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
[
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
with gr.Column(variant="panel"):
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
593 |
demo.queue(max_size=2).launch()
|
|
|
1 |
+
import os
|
2 |
+
import io,copy,requests,spaces,gradio as gr,numpy as np
|
3 |
+
from PIL import Image, ImageOps
|
4 |
+
import argparse,huggingface_hub,onnxruntime as rt,pandas as pd,traceback,tempfile,zipfile,re,ast,time
|
5 |
+
from datetime import datetime,timezone
|
6 |
+
from collections import defaultdict
|
7 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
8 |
+
import json
|
9 |
+
from modules.classifyTags import classify_tags,process_tags
|
10 |
+
from modules.florence2 import process_image,single_task_list,update_task_dropdown
|
11 |
+
from modules.reorganizer_model import reorganizer_list,reorganizer_class
|
12 |
+
from modules.tag_enhancer import prompt_enhancer
|
13 |
+
from modules.booru import gelbooru_gradio,fetch_gelbooru_images,on_select
|
14 |
+
|
15 |
+
os.environ['PYTORCH_ENABLE_MPS_FALLBACK']='1'
|
16 |
+
|
17 |
+
TITLE = "Multi-Tagger v1.2"
|
18 |
+
DESCRIPTION = """
|
19 |
+
Multi-Tagger is a versatile application for advanced image analysis and captioning. Perfect for AI artists or enthusiasts, it offers a range of features:
|
20 |
+
|
21 |
+
- **Automatic Tag Categorization**: Tags are grouped into categories.
|
22 |
+
- **Tag Enhancement**: Boost your prompts with enhanced descriptions using a built-in prompt enhancer.
|
23 |
+
- **Reorganizer**: Use a reorganizer model to format tags into a natural-language description.
|
24 |
+
- **Batch Support**: Upload and process multiple images simultaneously.
|
25 |
+
- **Downloadable Output**: Get almost all results as downloadable `.txt`, `.json`, and `.png` files in a `.zip` archive.
|
26 |
+
- **Image Fetcher**: Search for images from **Gelbooru** using flexible tag filters.
|
27 |
+
- CUDA or CPU support.
|
28 |
+
|
29 |
+
Example image by [me](https://huggingface.co/Werli).
|
30 |
+
"""
|
31 |
+
|
32 |
+
# Dataset v3 series of models:
|
33 |
+
SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
|
34 |
+
CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
|
35 |
+
VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3"
|
36 |
+
VIT_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-large-tagger-v3"
|
37 |
+
EVA02_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
|
38 |
+
# Dataset v2 series of models:
|
39 |
+
MOAT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
|
40 |
+
SWIN_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
|
41 |
+
CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
|
42 |
+
CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
|
43 |
+
VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
|
44 |
+
# IdolSankaku series of models:
|
45 |
+
EVA02_LARGE_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-eva02-large-tagger-v1"
|
46 |
+
SWINV2_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-swinv2-tagger-v1"
|
47 |
+
# Files to download from the repos
|
48 |
+
MODEL_FILENAME = "model.onnx"
|
49 |
+
LABEL_FILENAME = "selected_tags.csv"
|
50 |
+
|
51 |
+
kaomojis=['0_0','(o)_(o)','+_+','+_-','._.','<o>_<o>','<|>_<|>','=_=','>_<','3_3','6_9','>_o','@_@','^_^','o_o','u_u','x_x','|_|','||_||']
|
52 |
+
def parse_args()->argparse.Namespace:parser=argparse.ArgumentParser();parser.add_argument('--score-slider-step',type=float,default=.05);parser.add_argument('--score-general-threshold',type=float,default=.35);parser.add_argument('--score-character-threshold',type=float,default=.85);parser.add_argument('--share',action='store_true');return parser.parse_args()
|
53 |
+
def load_labels(dataframe)->list[str]:name_series=dataframe['name'];name_series=name_series.map(lambda x:x.replace('_',' ')if x not in kaomojis else x);tag_names=name_series.tolist();rating_indexes=list(np.where(dataframe['category']==9)[0]);general_indexes=list(np.where(dataframe['category']==0)[0]);character_indexes=list(np.where(dataframe['category']==4)[0]);return tag_names,rating_indexes,general_indexes,character_indexes
|
54 |
+
def mcut_threshold(probs):sorted_probs=probs[probs.argsort()[::-1]];difs=sorted_probs[:-1]-sorted_probs[1:];t=difs.argmax();thresh=(sorted_probs[t]+sorted_probs[t+1])/2;return thresh
|
55 |
+
|
56 |
+
class Timer:
|
57 |
+
def __init__(self):self.start_time=time.perf_counter();self.checkpoints=[('Start',self.start_time)]
|
58 |
+
def checkpoint(self,label='Checkpoint'):now=time.perf_counter();self.checkpoints.append((label,now))
|
59 |
+
def report(self,is_clear_checkpoints=True):
|
60 |
+
max_label_length=max(len(label)for(label,_)in self.checkpoints);prev_time=self.checkpoints[0][1]
|
61 |
+
for(label,curr_time)in self.checkpoints[1:]:elapsed=curr_time-prev_time;print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds");prev_time=curr_time
|
62 |
+
if is_clear_checkpoints:self.checkpoints.clear();self.checkpoint()
|
63 |
+
def report_all(self):
|
64 |
+
print('\n> Execution Time Report:');max_label_length=max(len(label)for(label,_)in self.checkpoints)if len(self.checkpoints)>0 else 0;prev_time=self.start_time
|
65 |
+
for(label,curr_time)in self.checkpoints[1:]:elapsed=curr_time-prev_time;print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds");prev_time=curr_time
|
66 |
+
total_time=self.checkpoints[-1][1]-self.start_time;print(f"{'Total Execution Time'.ljust(max_label_length)}: {total_time:.3f} seconds\n");self.checkpoints.clear()
|
67 |
+
def restart(self):self.start_time=time.perf_counter();self.checkpoints=[('Start',self.start_time)]
|
68 |
+
class Predictor:
|
69 |
+
def __init__(self):
|
70 |
+
self.model_target_size = None
|
71 |
+
self.last_loaded_repo = None
|
72 |
+
def download_model(self, model_repo):
|
73 |
+
csv_path = huggingface_hub.hf_hub_download(
|
74 |
+
model_repo,
|
75 |
+
LABEL_FILENAME,
|
76 |
+
)
|
77 |
+
model_path = huggingface_hub.hf_hub_download(
|
78 |
+
model_repo,
|
79 |
+
MODEL_FILENAME,
|
80 |
+
)
|
81 |
+
return csv_path, model_path
|
82 |
+
def load_model(self, model_repo):
|
83 |
+
if model_repo == self.last_loaded_repo:
|
84 |
+
return
|
85 |
+
|
86 |
+
csv_path, model_path = self.download_model(model_repo)
|
87 |
+
|
88 |
+
tags_df = pd.read_csv(csv_path)
|
89 |
+
sep_tags = load_labels(tags_df)
|
90 |
+
|
91 |
+
self.tag_names = sep_tags[0]
|
92 |
+
self.rating_indexes = sep_tags[1]
|
93 |
+
self.general_indexes = sep_tags[2]
|
94 |
+
self.character_indexes = sep_tags[3]
|
95 |
+
|
96 |
+
model = rt.InferenceSession(model_path)
|
97 |
+
_, height, width, _ = model.get_inputs()[0].shape
|
98 |
+
self.model_target_size = height
|
99 |
+
|
100 |
+
self.last_loaded_repo = model_repo
|
101 |
+
self.model = model
|
102 |
+
def prepare_image(self, path):
|
103 |
+
image = Image.open(path)
|
104 |
+
image = image.convert("RGBA")
|
105 |
+
target_size = self.model_target_size
|
106 |
+
|
107 |
+
canvas = Image.new("RGBA", image.size, (255, 255, 255))
|
108 |
+
canvas.alpha_composite(image)
|
109 |
+
image = canvas.convert("RGB")
|
110 |
+
|
111 |
+
# Pad image to square
|
112 |
+
image_shape = image.size
|
113 |
+
max_dim = max(image_shape)
|
114 |
+
pad_left = (max_dim - image_shape[0]) // 2
|
115 |
+
pad_top = (max_dim - image_shape[1]) // 2
|
116 |
+
|
117 |
+
padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
|
118 |
+
padded_image.paste(image, (pad_left, pad_top))
|
119 |
+
|
120 |
+
# Resize
|
121 |
+
if max_dim != target_size:
|
122 |
+
padded_image = padded_image.resize(
|
123 |
+
(target_size, target_size),
|
124 |
+
Image.BICUBIC,
|
125 |
+
)
|
126 |
+
# Convert to numpy array
|
127 |
+
image_array = np.asarray(padded_image, dtype=np.float32)
|
128 |
+
# Convert PIL-native RGB to BGR
|
129 |
+
image_array = image_array[:, :, ::-1]
|
130 |
+
return np.expand_dims(image_array, axis=0)
|
131 |
+
|
132 |
+
def create_file(self, content: str, directory: str, fileName: str) -> str:
|
133 |
+
# Write the content to a file
|
134 |
+
file_path = os.path.join(directory, fileName)
|
135 |
+
if fileName.endswith('.json'):
|
136 |
+
with open(file_path, 'w', encoding="utf-8") as file:
|
137 |
+
file.write(content)
|
138 |
+
else:
|
139 |
+
with open(file_path, 'w+', encoding="utf-8") as file:
|
140 |
+
file.write(content)
|
141 |
+
|
142 |
+
return file_path
|
143 |
+
|
144 |
+
def predict(
|
145 |
+
self,
|
146 |
+
gallery,
|
147 |
+
model_repo,
|
148 |
+
general_thresh,
|
149 |
+
general_mcut_enabled,
|
150 |
+
character_thresh,
|
151 |
+
character_mcut_enabled,
|
152 |
+
characters_merge_enabled,
|
153 |
+
reorganizer_model_repo,
|
154 |
+
additional_tags_prepend,
|
155 |
+
additional_tags_append,
|
156 |
+
tag_results,
|
157 |
+
progress=gr.Progress()
|
158 |
+
):
|
159 |
+
# Clear tag_results before starting a new prediction
|
160 |
+
tag_results.clear()
|
161 |
+
|
162 |
+
gallery_len = len(gallery)
|
163 |
+
print(f"Predict load model: {model_repo}, gallery length: {gallery_len}")
|
164 |
+
|
165 |
+
timer = Timer() # Create a timer
|
166 |
+
progressRatio = 0.5 if reorganizer_model_repo else 1
|
167 |
+
progressTotal = gallery_len + 1
|
168 |
+
current_progress = 0
|
169 |
+
|
170 |
+
self.load_model(model_repo)
|
171 |
+
current_progress += progressRatio/progressTotal;
|
172 |
+
progress(current_progress, desc="Initialize wd model finished")
|
173 |
+
timer.checkpoint(f"Initialize wd model")
|
174 |
+
|
175 |
+
txt_infos = []
|
176 |
+
output_dir = tempfile.mkdtemp()
|
177 |
+
if not os.path.exists(output_dir):
|
178 |
+
os.makedirs(output_dir)
|
179 |
+
|
180 |
+
sorted_general_strings = ""
|
181 |
+
# Create categorized output string
|
182 |
+
categorized_output_strings = []
|
183 |
+
rating = None
|
184 |
+
character_res = None
|
185 |
+
general_res = None
|
186 |
+
|
187 |
+
if reorganizer_model_repo:
|
188 |
+
print(f"Reorganizer load model {reorganizer_model_repo}")
|
189 |
+
reorganizer = reorganizer_class(reorganizer_model_repo, loadModel=True)
|
190 |
+
current_progress += progressRatio/progressTotal;
|
191 |
+
progress(current_progress, desc="Initialize reoganizer model finished")
|
192 |
+
timer.checkpoint(f"Initialize reoganizer model")
|
193 |
+
|
194 |
+
timer.report()
|
195 |
+
|
196 |
+
prepend_list = [tag.strip() for tag in additional_tags_prepend.split(",") if tag.strip()]
|
197 |
+
append_list = [tag.strip() for tag in additional_tags_append.split(",") if tag.strip()]
|
198 |
+
if prepend_list and append_list:
|
199 |
+
append_list = [item for item in append_list if item not in prepend_list]
|
200 |
+
|
201 |
+
# Dictionary to track counters for each filename
|
202 |
+
name_counters = defaultdict(int)
|
203 |
+
|
204 |
+
for idx, value in enumerate(gallery):
|
205 |
+
try:
|
206 |
+
image_path = value[0]
|
207 |
+
image_name = os.path.splitext(os.path.basename(image_path))[0]
|
208 |
+
|
209 |
+
# Increment the counter for the current name
|
210 |
+
name_counters[image_name] += 1
|
211 |
+
|
212 |
+
if name_counters[image_name] > 1:
|
213 |
+
image_name = f"{image_name}_{name_counters[image_name]:02d}"
|
214 |
+
|
215 |
+
image = self.prepare_image(image_path)
|
216 |
+
|
217 |
+
input_name = self.model.get_inputs()[0].name
|
218 |
+
label_name = self.model.get_outputs()[0].name
|
219 |
+
print(f"Gallery {idx:02d}: Starting run wd model...")
|
220 |
+
preds = self.model.run([label_name], {input_name: image})[0]
|
221 |
+
|
222 |
+
labels = list(zip(self.tag_names, preds[0].astype(float)))
|
223 |
+
|
224 |
+
# First 4 labels are actually ratings: pick one with argmax
|
225 |
+
ratings_names = [labels[i] for i in self.rating_indexes]
|
226 |
+
rating = dict(ratings_names)
|
227 |
+
|
228 |
+
# Then we have general tags: pick any where prediction confidence > threshold
|
229 |
+
general_names = [labels[i] for i in self.general_indexes]
|
230 |
+
|
231 |
+
if general_mcut_enabled:
|
232 |
+
general_probs = np.array([x[1] for x in general_names])
|
233 |
+
general_thresh = mcut_threshold(general_probs)
|
234 |
+
|
235 |
+
general_res = [x for x in general_names if x[1] > general_thresh]
|
236 |
+
general_res = dict(general_res)
|
237 |
+
|
238 |
+
# Everything else is characters: pick any where prediction confidence > threshold
|
239 |
+
character_names = [labels[i] for i in self.character_indexes]
|
240 |
+
|
241 |
+
if character_mcut_enabled:
|
242 |
+
character_probs = np.array([x[1] for x in character_names])
|
243 |
+
character_thresh = mcut_threshold(character_probs)
|
244 |
+
character_thresh = max(0.15, character_thresh)
|
245 |
+
|
246 |
+
character_res = [x for x in character_names if x[1] > character_thresh]
|
247 |
+
character_res = dict(character_res)
|
248 |
+
character_list = list(character_res.keys())
|
249 |
+
|
250 |
+
sorted_general_list = sorted(
|
251 |
+
general_res.items(),
|
252 |
+
key=lambda x: x[1],
|
253 |
+
reverse=True,
|
254 |
+
)
|
255 |
+
sorted_general_list = [x[0] for x in sorted_general_list]
|
256 |
+
# Remove values from character_list that already exist in sorted_general_list
|
257 |
+
character_list = [item for item in character_list if item not in sorted_general_list]
|
258 |
+
# Remove values from sorted_general_list that already exist in prepend_list or append_list
|
259 |
+
if prepend_list:
|
260 |
+
sorted_general_list = [item for item in sorted_general_list if item not in prepend_list]
|
261 |
+
if append_list:
|
262 |
+
sorted_general_list = [item for item in sorted_general_list if item not in append_list]
|
263 |
+
|
264 |
+
sorted_general_list = prepend_list + sorted_general_list + append_list
|
265 |
+
|
266 |
+
sorted_general_strings = ", ".join((character_list if characters_merge_enabled else []) + sorted_general_list).replace("(", "\(").replace(")", "\)")
|
267 |
+
|
268 |
+
classified_tags, unclassified_tags = classify_tags(sorted_general_list)
|
269 |
+
|
270 |
+
# Create a single string of ALL categorized tags for the current image
|
271 |
+
categorized_output_string = ', '.join([', '.join(tags) for tags in classified_tags.values()])
|
272 |
+
categorized_output_strings.append(categorized_output_string)
|
273 |
+
# Collect all categorized output strings into a single string
|
274 |
+
final_categorized_output = ', '.join(categorized_output_strings)
|
275 |
+
|
276 |
+
# Create a .txt file for "Output (string)" and "Categorized Output (string)"
|
277 |
+
txt_content = f"Output (string): {sorted_general_strings}\nCategorized Output (string): {final_categorized_output}"
|
278 |
+
txt_file = self.create_file(txt_content, output_dir, f"{image_name}_output.txt")
|
279 |
+
txt_infos.append({"path": txt_file, "name": f"{image_name}_output.txt"})
|
280 |
+
|
281 |
+
# Create a .json file for "Categorized (tags)"
|
282 |
+
json_content = json.dumps(classified_tags, indent=4)
|
283 |
+
json_file = self.create_file(json_content, output_dir, f"{image_name}_categorized_tags.json")
|
284 |
+
txt_infos.append({"path": json_file, "name": f"{image_name}_categorized_tags.json"})
|
285 |
+
|
286 |
+
# Save a copy of the uploaded image in PNG format
|
287 |
+
image_path = value[0]
|
288 |
+
image = Image.open(image_path)
|
289 |
+
image.save(os.path.join(output_dir, f"{image_name}.png"), format="PNG")
|
290 |
+
txt_infos.append({"path": os.path.join(output_dir, f"{image_name}.png"), "name": f"{image_name}.png"})
|
291 |
+
|
292 |
+
current_progress += progressRatio/progressTotal;
|
293 |
+
progress(current_progress, desc=f"image{idx:02d}, predict finished")
|
294 |
+
timer.checkpoint(f"image{idx:02d}, predict finished")
|
295 |
+
|
296 |
+
if reorganizer_model_repo:
|
297 |
+
print(f"Starting reorganizer...")
|
298 |
+
reorganize_strings = reorganizer.reorganize(sorted_general_strings)
|
299 |
+
reorganize_strings = re.sub(r" *Title: *", "", reorganize_strings)
|
300 |
+
reorganize_strings = re.sub(r"\n+", ",", reorganize_strings)
|
301 |
+
reorganize_strings = re.sub(r",,+", ",", reorganize_strings)
|
302 |
+
sorted_general_strings += ",\n\n" + reorganize_strings
|
303 |
+
|
304 |
+
current_progress += progressRatio/progressTotal;
|
305 |
+
progress(current_progress, desc=f"image{idx:02d}, reorganizer finished")
|
306 |
+
timer.checkpoint(f"image{idx:02d}, reorganizer finished")
|
307 |
+
|
308 |
+
txt_file = self.create_file(sorted_general_strings, output_dir, image_name + ".txt")
|
309 |
+
txt_infos.append({"path":txt_file, "name": image_name + ".txt"})
|
310 |
+
|
311 |
+
# Store the result in tag_results using image_path as the key
|
312 |
+
tag_results[image_path] = {
|
313 |
+
"strings": sorted_general_strings,
|
314 |
+
"strings2": categorized_output_string, # Store the categorized output string here
|
315 |
+
"classified_tags": classified_tags,
|
316 |
+
"rating": rating,
|
317 |
+
"character_res": character_res,
|
318 |
+
"general_res": general_res,
|
319 |
+
"unclassified_tags": unclassified_tags,
|
320 |
+
"enhanced_tags": "" # Initialize as empty string
|
321 |
+
}
|
322 |
+
|
323 |
+
timer.report()
|
324 |
+
except Exception as e:
|
325 |
+
print(traceback.format_exc())
|
326 |
+
print("Error predict: " + str(e))
|
327 |
+
# Zip creation logic:
|
328 |
+
download = []
|
329 |
+
if txt_infos is not None and len(txt_infos) > 0:
|
330 |
+
downloadZipPath = os.path.join(output_dir, "Multi-tagger-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip")
|
331 |
+
with zipfile.ZipFile(downloadZipPath, 'w', zipfile.ZIP_DEFLATED) as taggers_zip:
|
332 |
+
for info in txt_infos:
|
333 |
+
# Get file name from lookup
|
334 |
+
taggers_zip.write(info["path"], arcname=info["name"])
|
335 |
+
download.append(downloadZipPath)
|
336 |
+
# End zip creation logic
|
337 |
+
if reorganizer_model_repo:
|
338 |
+
reorganizer.release_vram()
|
339 |
+
del reorganizer
|
340 |
+
|
341 |
+
progress(1, desc=f"Predict completed")
|
342 |
+
timer.report_all() # Print all recorded times
|
343 |
+
print("Predict is complete.")
|
344 |
+
|
345 |
+
return download, sorted_general_strings, final_categorized_output, classified_tags, rating, character_res, general_res, unclassified_tags, tag_results
|
346 |
+
def get_selection_from_gallery(gallery: list, tag_results: dict, selected_state: gr.SelectData):
|
347 |
+
if not selected_state:
|
348 |
+
return selected_state
|
349 |
+
tag_result = {
|
350 |
+
"strings": "",
|
351 |
+
"strings2": "",
|
352 |
+
"classified_tags": "{}",
|
353 |
+
"rating": "",
|
354 |
+
"character_res": "",
|
355 |
+
"general_res": "",
|
356 |
+
"unclassified_tags": "{}",
|
357 |
+
"enhanced_tags": ""
|
358 |
+
}
|
359 |
+
if selected_state.value["image"]["path"] in tag_results:
|
360 |
+
tag_result = tag_results[selected_state.value["image"]["path"]]
|
361 |
+
return (selected_state.value["image"]["path"], selected_state.value["caption"]), tag_result["strings"], tag_result["strings2"], tag_result["classified_tags"], tag_result["rating"], tag_result["character_res"], tag_result["general_res"], tag_result["unclassified_tags"], tag_result["enhanced_tags"]
|
362 |
+
def append_gallery(gallery:list,image:str):
|
363 |
+
if gallery is None:gallery=[]
|
364 |
+
if not image:return gallery,None
|
365 |
+
gallery.append(image);return gallery,None
|
366 |
+
def extend_gallery(gallery:list,images):
|
367 |
+
if gallery is None:gallery=[]
|
368 |
+
if not images:return gallery
|
369 |
+
gallery.extend(images);return gallery
|
370 |
+
def remove_image_from_gallery(gallery:list,selected_image:str):
|
371 |
+
if not gallery or not selected_image:return gallery
|
372 |
+
selected_image=ast.literal_eval(selected_image)
|
373 |
+
if selected_image in gallery:gallery.remove(selected_image)
|
374 |
+
return gallery
|
375 |
+
args = parse_args()
|
376 |
+
predictor = Predictor()
|
377 |
+
dropdown_list = [
|
378 |
+
EVA02_LARGE_MODEL_DSV3_REPO,
|
379 |
+
SWINV2_MODEL_DSV3_REPO,
|
380 |
+
CONV_MODEL_DSV3_REPO,
|
381 |
+
VIT_MODEL_DSV3_REPO,
|
382 |
+
VIT_LARGE_MODEL_DSV3_REPO,
|
383 |
+
# ---
|
384 |
+
MOAT_MODEL_DSV2_REPO,
|
385 |
+
SWIN_MODEL_DSV2_REPO,
|
386 |
+
CONV_MODEL_DSV2_REPO,
|
387 |
+
CONV2_MODEL_DSV2_REPO,
|
388 |
+
VIT_MODEL_DSV2_REPO,
|
389 |
+
# ---
|
390 |
+
SWINV2_MODEL_IS_DSV1_REPO,
|
391 |
+
EVA02_LARGE_MODEL_IS_DSV1_REPO,
|
392 |
+
]
|
393 |
+
|
394 |
+
def _restart_space():
|
395 |
+
HF_TOKEN=os.getenv('HF_TOKEN')
|
396 |
+
if not HF_TOKEN:raise ValueError('HF_TOKEN environment variable is not set.')
|
397 |
+
huggingface_hub.HfApi().restart_space(repo_id='Werli/Multi-Tagger',token=HF_TOKEN,factory_reboot=False)
|
398 |
+
scheduler=BackgroundScheduler()
|
399 |
+
# Add a job to restart the space every 2 days (172800 seconds)
|
400 |
+
restart_space_job = scheduler.add_job(_restart_space, "interval", seconds=172800)
|
401 |
+
scheduler.start()
|
402 |
+
next_run_time_utc=restart_space_job.next_run_time.astimezone(timezone.utc)
|
403 |
+
NEXT_RESTART=f"Next Restart: {next_run_time_utc.strftime('%Y-%m-%d %H:%M:%S')} (UTC) - The space will restart every 2 days to ensure stability and performance. It uses a background scheduler to handle the restart process."
|
404 |
+
|
405 |
+
css = """
|
406 |
+
#output {height: 500px; overflow: auto; border: 1px solid #ccc;}
|
407 |
+
label.float.svelte-i3tvor {position: relative !important;}
|
408 |
+
.reduced-height.svelte-11chud3 {height: calc(80% - var(--size-10));}
|
409 |
+
"""
|
410 |
+
|
411 |
+
with gr.Blocks(title=TITLE, css=css, theme="Werli/Multi-Tagger", fill_width=True) as demo:
|
412 |
+
gr.Markdown(value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>")
|
413 |
+
gr.Markdown(value=DESCRIPTION)
|
414 |
+
gr.Markdown(NEXT_RESTART)
|
415 |
+
with gr.Tab(label="Waifu Diffusion"):
|
416 |
+
with gr.Row():
|
417 |
+
with gr.Column():
|
418 |
+
submit = gr.Button(value="Submit", variant="primary", size="lg")
|
419 |
+
with gr.Column(variant="panel"):
|
420 |
+
# Create an Image component for uploading images
|
421 |
+
image_input = gr.Image(label="Upload an Image or clicking paste from clipboard button", type="filepath", sources=["upload", "clipboard"], height=150)
|
422 |
+
with gr.Row():
|
423 |
+
upload_button = gr.UploadButton("Upload multiple images", file_types=["image"], file_count="multiple", size="sm")
|
424 |
+
remove_button = gr.Button("Remove Selected Image", size="sm")
|
425 |
+
gallery = gr.Gallery(columns=5, rows=5, show_share_button=False, interactive=True, height="500px", label="Grid of images")
|
426 |
+
model_repo = gr.Dropdown(
|
427 |
+
dropdown_list,
|
428 |
+
value=EVA02_LARGE_MODEL_DSV3_REPO,
|
429 |
+
label="Model",
|
430 |
+
)
|
431 |
+
with gr.Row():
|
432 |
+
general_thresh = gr.Slider(
|
433 |
+
0,
|
434 |
+
1,
|
435 |
+
step=args.score_slider_step,
|
436 |
+
value=args.score_general_threshold,
|
437 |
+
label="General Tags Threshold",
|
438 |
+
scale=3,
|
439 |
+
)
|
440 |
+
general_mcut_enabled = gr.Checkbox(
|
441 |
+
value=False,
|
442 |
+
label="Use MCut threshold",
|
443 |
+
scale=1,
|
444 |
+
)
|
445 |
+
with gr.Row():
|
446 |
+
character_thresh = gr.Slider(
|
447 |
+
0,
|
448 |
+
1,
|
449 |
+
step=args.score_slider_step,
|
450 |
+
value=args.score_character_threshold,
|
451 |
+
label="Character Tags Threshold",
|
452 |
+
scale=3,
|
453 |
+
)
|
454 |
+
character_mcut_enabled = gr.Checkbox(
|
455 |
+
value=False,
|
456 |
+
label="Use MCut threshold",
|
457 |
+
scale=1,
|
458 |
+
)
|
459 |
+
with gr.Row():
|
460 |
+
characters_merge_enabled = gr.Checkbox(
|
461 |
+
value=True,
|
462 |
+
label="Merge characters into the string output",
|
463 |
+
scale=1,
|
464 |
+
)
|
465 |
+
with gr.Row():
|
466 |
+
reorganizer_model_repo = gr.Dropdown(
|
467 |
+
[None] + reorganizer_list,
|
468 |
+
value=None,
|
469 |
+
label="Reorganizer Model",
|
470 |
+
info="Use a model to create a description for you",
|
471 |
+
)
|
472 |
+
with gr.Row():
|
473 |
+
additional_tags_prepend = gr.Text(label="Prepend Additional tags (comma split)")
|
474 |
+
additional_tags_append = gr.Text(label="Append Additional tags (comma split)")
|
475 |
+
with gr.Row():
|
476 |
+
clear = gr.ClearButton(
|
477 |
+
components=[
|
478 |
+
gallery,
|
479 |
+
model_repo,
|
480 |
+
general_thresh,
|
481 |
+
general_mcut_enabled,
|
482 |
+
character_thresh,
|
483 |
+
character_mcut_enabled,
|
484 |
+
characters_merge_enabled,
|
485 |
+
reorganizer_model_repo,
|
486 |
+
additional_tags_prepend,
|
487 |
+
additional_tags_append,
|
488 |
+
],
|
489 |
+
variant="secondary",
|
490 |
+
size="lg",
|
491 |
+
)
|
492 |
+
with gr.Column(variant="panel"):
|
493 |
+
download_file = gr.File(label="Download includes: All outputs* and image(s)") # 0
|
494 |
+
character_res = gr.Label(label="Output (characters)") # 1
|
495 |
+
sorted_general_strings = gr.Textbox(label="Output (string)*", show_label=True, show_copy_button=True) # 2
|
496 |
+
final_categorized_output = gr.Textbox(label="Categorized (string)* - If it's too long, select an image to display tags correctly.", show_label=True, show_copy_button=True) # 3
|
497 |
+
pe_generate_btn = gr.Button(value="ENHANCE TAGS", size="lg", variant="primary") # 4
|
498 |
+
enhanced_tags = gr.Textbox(label="Enhanced Tags", show_label=True, show_copy_button=True) # 5
|
499 |
+
prompt_enhancer_model = gr.Radio(["Medium", "Long", "Flux"], label="Model Choice", value="Medium", info="Enhance your prompts with Medium or Long answers") # 6
|
500 |
+
categorized = gr.JSON(label="Categorized (tags)* - JSON") # 7
|
501 |
+
rating = gr.Label(label="Rating") # 8
|
502 |
+
general_res = gr.Label(label="Output (tags)") # 9
|
503 |
+
unclassified = gr.JSON(label="Unclassified (tags)") # 10
|
504 |
+
clear.add(
|
505 |
+
[
|
506 |
+
download_file,
|
507 |
+
sorted_general_strings,
|
508 |
+
final_categorized_output,
|
509 |
+
categorized,
|
510 |
+
rating,
|
511 |
+
character_res,
|
512 |
+
general_res,
|
513 |
+
unclassified,
|
514 |
+
prompt_enhancer_model,
|
515 |
+
enhanced_tags,
|
516 |
+
]
|
517 |
+
)
|
518 |
+
tag_results = gr.State({})
|
519 |
+
# Define the event listener to add the uploaded image to the gallery
|
520 |
+
image_input.change(append_gallery, inputs=[gallery, image_input], outputs=[gallery, image_input])
|
521 |
+
# When the upload button is clicked, add the new images to the gallery
|
522 |
+
upload_button.upload(extend_gallery, inputs=[gallery, upload_button], outputs=gallery)
|
523 |
+
# Event to update the selected image when an image is clicked in the gallery
|
524 |
+
selected_image = gr.Textbox(label="Selected Image", visible=False)
|
525 |
+
gallery.select(get_selection_from_gallery,inputs=[gallery, tag_results],outputs=[selected_image, sorted_general_strings, final_categorized_output, categorized, rating, character_res, general_res, unclassified, enhanced_tags])
|
526 |
+
# Event to remove a selected image from the gallery
|
527 |
+
remove_button.click(remove_image_from_gallery, inputs=[gallery, selected_image], outputs=gallery)
|
528 |
+
# Event to for the Prompt Enhancer Button
|
529 |
+
pe_generate_btn.click(lambda tags,model:prompt_enhancer('','',tags,model)[0],inputs=[final_categorized_output,prompt_enhancer_model],outputs=[enhanced_tags])
|
530 |
+
submit.click(
|
531 |
+
predictor.predict,
|
532 |
+
inputs=[
|
533 |
+
gallery,
|
534 |
+
model_repo,
|
535 |
+
general_thresh,
|
536 |
+
general_mcut_enabled,
|
537 |
+
character_thresh,
|
538 |
+
character_mcut_enabled,
|
539 |
+
characters_merge_enabled,
|
540 |
+
reorganizer_model_repo,
|
541 |
+
additional_tags_prepend,
|
542 |
+
additional_tags_append,
|
543 |
+
tag_results,
|
544 |
+
],
|
545 |
+
outputs=[download_file, sorted_general_strings, final_categorized_output, categorized, rating, character_res, general_res, unclassified, tag_results,],
|
546 |
+
)
|
547 |
+
gr.Examples(
|
548 |
+
[["images/1girl.png", VIT_LARGE_MODEL_DSV3_REPO, 0.35, False, 0.85, False]],
|
549 |
+
inputs=[
|
550 |
+
image_input,
|
551 |
+
model_repo,
|
552 |
+
general_thresh,
|
553 |
+
general_mcut_enabled,
|
554 |
+
character_thresh,
|
555 |
+
character_mcut_enabled,
|
556 |
+
],
|
557 |
+
)
|
558 |
+
with gr.Tab(label="Florence 2 Image Captioning"):
|
559 |
+
with gr.Row():
|
560 |
+
with gr.Column(variant="panel"):
|
561 |
+
input_img = gr.Image(label="Input Picture")
|
562 |
+
task_type = gr.Radio(choices=['Single task', 'Cascaded task'], label='Task type selector', value='Single task')
|
563 |
+
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Caption")
|
564 |
+
task_type.change(fn=update_task_dropdown, inputs=task_type, outputs=task_prompt)
|
565 |
+
text_input = gr.Textbox(label="Text Input (optional)")
|
566 |
+
submit_btn = gr.Button(value="Submit")
|
567 |
+
with gr.Column(variant="panel"):
|
568 |
+
output_text = gr.Textbox(label="Output Text", show_label=True, show_copy_button=True, lines=8)
|
569 |
+
output_img = gr.Image(label="Output Image")
|
570 |
+
gr.Examples(
|
571 |
+
examples=[
|
572 |
+
["images/image1.png", 'Object Detection'],
|
573 |
+
["images/image2.png", 'OCR with Region']
|
574 |
+
],
|
575 |
+
inputs=[input_img, task_prompt],
|
576 |
+
outputs=[output_text, output_img],
|
577 |
+
fn=process_image,
|
578 |
+
cache_examples=False,
|
579 |
+
label='Try examples'
|
580 |
+
)
|
581 |
+
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
|
582 |
+
with gr.Tab(label="Gelbooru Image Fetcher"):
|
583 |
+
with gr.Row():
|
584 |
+
with gr.Column():
|
585 |
+
gr.Markdown("### ⚙️ Search Parameters")
|
586 |
+
site = gr.Dropdown(label="Select Source", choices=["Gelbooru", "None (will not work)"], value="Gelbooru")
|
587 |
+
OR_tags = gr.Textbox(label="OR Tags (comma-separated)", placeholder="e.g. solo, 1girl, 1boy, artist, character, ...")
|
588 |
+
AND_tags = gr.Textbox(label="AND Tags (comma-separated)", placeholder="e.g. black hair, cat ears, black hair, granblue fantasy, ...")
|
589 |
+
exclude_tags = gr.Textbox(label="Exclude Tags (comma-separated)", placeholder="e.g. animated, watermark, username, ...")
|
590 |
+
score = gr.Number(label="Minimum Score", value=0)
|
591 |
+
count = gr.Slider(label="Number of Images", minimum=1, maximum=4, step=1, value=1) # Increase if necessary (not recommend)
|
592 |
+
Safe = gr.Checkbox(label="Include Safe", value=True)
|
593 |
+
Questionable = gr.Checkbox(label="Include Questionable", value=True)
|
594 |
+
Explicit = gr.Checkbox(label="Include Explicit", value=False)
|
595 |
+
#user_id = gr.Textbox(label="User ID (Optional)", value="")
|
596 |
+
#api_key = gr.Textbox(label="API Key (Optional)", value="", type="password")
|
597 |
+
|
598 |
+
submit_btn = gr.Button("Fetch Images", variant="primary")
|
599 |
+
|
600 |
+
with gr.Column():
|
601 |
+
gr.Markdown("### 📄 Results")
|
602 |
+
images_output = gr.Gallery(label="Images", columns=3, rows=2, object_fit="contain", height=500)
|
603 |
+
tags_output = gr.Textbox(label="Tags", placeholder="Select an image to show tags", lines=5, show_copy_button=True)
|
604 |
+
post_url_output = gr.Textbox(label="Post URL", lines=1, show_copy_button=True)
|
605 |
+
image_url_output = gr.Textbox(label="Image URL", lines=1, show_copy_button=True)
|
606 |
+
|
607 |
+
# State to store tags, URLs
|
608 |
+
tags_state = gr.State([])
|
609 |
+
post_url_state = gr.State([])
|
610 |
+
image_url_state = gr.State([])
|
611 |
+
|
612 |
+
submit_btn.click(
|
613 |
+
fn=gelbooru_gradio,
|
614 |
+
inputs=[OR_tags, AND_tags, exclude_tags, score, count, Safe, Questionable, Explicit, site], # add 'api_key' and 'user_id' if necessary
|
615 |
+
outputs=[images_output, tags_state, post_url_state, image_url_state],
|
616 |
+
)
|
617 |
+
|
618 |
+
images_output.select(
|
619 |
+
fn=on_select,
|
620 |
+
inputs=[tags_state, post_url_state, image_url_state],
|
621 |
+
outputs=[tags_output, post_url_output, image_url_output],
|
622 |
+
)
|
623 |
+
gr.Markdown("""
|
624 |
+
---
|
625 |
+
ComfyUI version: [Comfyui-Gelbooru](https://github.com/1mckw/Comfyui-Gelbooru)
|
626 |
+
""")
|
627 |
+
with gr.Tab(label="Categorizer++"):
|
628 |
+
with gr.Row():
|
629 |
+
with gr.Column(variant="panel"):
|
630 |
+
input_tags = gr.Textbox(label="Input Tags", placeholder="1girl, cat, horns, blue hair, ...\nor\n? 1girl 1234567? cat 1234567? horns 1234567? blue hair 1234567? ...", lines=4)
|
631 |
+
submit_button = gr.Button(value="Submit", variant="primary", size="lg")
|
632 |
+
with gr.Column(variant="panel"):
|
633 |
+
categorized_string = gr.Textbox(label="Categorized (string)", show_label=True, show_copy_button=True, lines=8)
|
634 |
+
categorized_json = gr.JSON(label="Categorized (tags) - JSON")
|
635 |
+
submit_button.click(process_tags, inputs=[input_tags], outputs=[categorized_string, categorized_json])
|
636 |
+
with gr.Column(variant="panel"):
|
637 |
+
pe_generate_btn = gr.Button(value="ENHANCE TAGS", size="lg", variant="primary")
|
638 |
+
enhanced_tags = gr.Textbox(label="Enhanced Tags", show_label=True, show_copy_button=True)
|
639 |
+
prompt_enhancer_model = gr.Radio(["Medium", "Long", "Flux"], label="Model Choice", value="Medium", info="Enhance your prompts with Medium or Long answers")
|
640 |
+
pe_generate_btn.click(lambda tags,model:prompt_enhancer('','',tags,model)[0],inputs=[categorized_string,prompt_enhancer_model],outputs=[enhanced_tags])
|
641 |
demo.queue(max_size=2).launch()
|
modules/booru.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import re
|
3 |
+
import base64
|
4 |
+
import io
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image, ImageOps
|
7 |
+
import torch
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
# Helper to load image from URL
|
11 |
+
def loadImageFromUrl(url):
|
12 |
+
if url.startswith("data:image/"):
|
13 |
+
i = Image.open(io.BytesIO(base64.b64decode(url.split(",")[1])))
|
14 |
+
elif url.startswith("s3://"):
|
15 |
+
raise Exception("S3 URLs not supported in this interface")
|
16 |
+
else:
|
17 |
+
response = requests.get(url, timeout=5)
|
18 |
+
if response.status_code != 200:
|
19 |
+
raise Exception(response.text)
|
20 |
+
i = Image.open(io.BytesIO(response.content))
|
21 |
+
|
22 |
+
i = ImageOps.exif_transpose(i)
|
23 |
+
if i.mode != "RGBA":
|
24 |
+
i = i.convert("RGBA")
|
25 |
+
|
26 |
+
alpha = i.split()[-1]
|
27 |
+
image = Image.new("RGB", i.size, (0, 0, 0))
|
28 |
+
image.paste(i, mask=alpha)
|
29 |
+
|
30 |
+
image = np.array(image).astype(np.float32) / 255.0
|
31 |
+
image = torch.from_numpy(image)[None,]
|
32 |
+
return image
|
33 |
+
|
34 |
+
# Fetch data from Gelbooru or None
|
35 |
+
def fetch_gelbooru_images(site, OR_tags, AND_tags, exclude_tag, score, count, Safe, Questionable, Explicit): # add 'api_key' and 'user_id' if necessary
|
36 |
+
# AND_tags
|
37 |
+
AND_tags = AND_tags.rstrip(',').rstrip(' ')
|
38 |
+
AND_tags = AND_tags.split(',')
|
39 |
+
AND_tags = [item.strip().replace(' ', '_').replace('\\', '') for item in AND_tags]
|
40 |
+
AND_tags = [item for item in AND_tags if item]
|
41 |
+
if len(AND_tags) > 1:
|
42 |
+
AND_tags = '+'.join(AND_tags)
|
43 |
+
else:
|
44 |
+
AND_tags = AND_tags[0] if AND_tags else ''
|
45 |
+
|
46 |
+
# OR_tags
|
47 |
+
OR_tags = OR_tags.rstrip(',').rstrip(' ')
|
48 |
+
OR_tags = OR_tags.split(',')
|
49 |
+
OR_tags = [item.strip().replace(' ', '_').replace('\\', '') for item in OR_tags]
|
50 |
+
OR_tags = [item for item in OR_tags if item]
|
51 |
+
if len(OR_tags) > 1:
|
52 |
+
OR_tags = '{' + ' ~ '.join(OR_tags) + '}'
|
53 |
+
else:
|
54 |
+
OR_tags = OR_tags[0] if OR_tags else ''
|
55 |
+
|
56 |
+
# Exclude tags
|
57 |
+
exclude_tag = '+'.join('-' + item.strip().replace(' ', '_') for item in exclude_tag.split(','))
|
58 |
+
|
59 |
+
rate_exclusion = ""
|
60 |
+
if not Safe:
|
61 |
+
if site == "None":
|
62 |
+
rate_exclusion += "+-rating%3asafe"
|
63 |
+
else:
|
64 |
+
rate_exclusion += "+-rating%3ageneral"
|
65 |
+
if not Questionable:
|
66 |
+
if site == "None":
|
67 |
+
rate_exclusion += "+-rating%3aquestionable"
|
68 |
+
else:
|
69 |
+
rate_exclusion += "+-rating%3aquestionable+-rating%3aSensitive"
|
70 |
+
if not Explicit:
|
71 |
+
if site == "None":
|
72 |
+
rate_exclusion += "+-rating%3aexplicit"
|
73 |
+
else:
|
74 |
+
rate_exclusion += "+-rating%3aexplicit"
|
75 |
+
|
76 |
+
if site == "None":
|
77 |
+
base_url = "https://api.example.com/index.php"
|
78 |
+
else:
|
79 |
+
base_url = "https://gelbooru.com/index.php"
|
80 |
+
|
81 |
+
query_params = (
|
82 |
+
f"page=dapi&s=post&q=index&tags=sort%3arandom+"
|
83 |
+
f"{exclude_tag}+{OR_tags}+{AND_tags}+{rate_exclusion}"
|
84 |
+
f"+score%3a>{score}&limit={count}&json=1"
|
85 |
+
#f"+score%3a>{score}&api_key={api_key}&user_id={user_id}&limit={count}&json=1"
|
86 |
+
)
|
87 |
+
url = f"{base_url}?{query_params}".replace("-+", "")
|
88 |
+
url = re.sub(r"\++", "+", url)
|
89 |
+
|
90 |
+
response = requests.get(url, verify=True)
|
91 |
+
if site == "None":
|
92 |
+
posts = response.json()
|
93 |
+
else:
|
94 |
+
posts = response.json().get('post', [])
|
95 |
+
|
96 |
+
image_urls = [post.get("file_url", "") for post in posts]
|
97 |
+
tags_list = [post.get("tags", "").replace(" ", ", ").replace("_", " ").replace("(", "\\(").replace(")", "\\)").strip() for post in posts]
|
98 |
+
#tags_list = [post.get("tags", "").replace("_", " ").replace(" ", ", ").strip() for post in posts]
|
99 |
+
ids_list = [str(post.get("id", "")) for post in posts]
|
100 |
+
|
101 |
+
if site == "Gelbooru":
|
102 |
+
post_urls = [f"https://gelbooru.com/index.php?page=post&s=view&id={id}" for id in ids_list]
|
103 |
+
#else:
|
104 |
+
# post_urls = [f"https://api.none.com/index.php?page=post&s=view&id={id}" for id in ids_list]
|
105 |
+
|
106 |
+
return image_urls, tags_list, post_urls
|
107 |
+
|
108 |
+
# Main function to fetch and return processed images
|
109 |
+
def gelbooru_gradio(
|
110 |
+
OR_tags, AND_tags, exclude_tags, score, count, Safe, Questionable, Explicit, site # add 'api_key' and 'user_id' if necessary
|
111 |
+
):
|
112 |
+
image_urls, tags_list, post_urls = fetch_gelbooru_images(
|
113 |
+
site, OR_tags, AND_tags, exclude_tags, score, count, Safe, Questionable, Explicit # 'api_key' and 'user_id' if necessary
|
114 |
+
)
|
115 |
+
|
116 |
+
if not image_urls:
|
117 |
+
return [], [], [], []
|
118 |
+
|
119 |
+
image_data = []
|
120 |
+
for url in image_urls:
|
121 |
+
try:
|
122 |
+
image = loadImageFromUrl(url)
|
123 |
+
image = (image * 255).clamp(0, 255).cpu().numpy().astype(np.uint8)[0]
|
124 |
+
image = Image.fromarray(image)
|
125 |
+
image_data.append(image)
|
126 |
+
except Exception as e:
|
127 |
+
print(f"Error loading image from {url}: {e}")
|
128 |
+
continue
|
129 |
+
|
130 |
+
return image_data, tags_list, post_urls, image_urls
|
131 |
+
|
132 |
+
# Update UI on image click
|
133 |
+
def on_select(evt: gr.SelectData, tags_list, post_url_list, image_url_list):
|
134 |
+
idx = evt.index
|
135 |
+
if idx < len(tags_list):
|
136 |
+
return tags_list[idx], post_url_list[idx], image_url_list[idx]
|
137 |
+
return "No tags", "", ""
|
modules/classifyTags.py
CHANGED
@@ -1,174 +1,191 @@
|
|
1 |
-
from collections import defaultdict
|
2 |
-
|
3 |
-
# Define grouping rules (categories and keywords)
|
4 |
-
# Provided categories and reversed_categories
|
5 |
-
categories = {
|
6 |
-
"Explicit" : ["sex", "69", "paizuri", "cum", "precum", "areola_slip", "hetero", "erection", "oral", "fellatio", "yaoi", "ejaculation", "ejaculating", "masturbation", "handjob", "bulge", "rape", "_rape", "doggystyle", "threesome", "missionary", "object_insertion", "nipple", "nipples", "pussy", "anus", "penis", "groin", "testicles", "testicle", "anal", "cameltoe", "areolae", "dildo", "clitoris", "top-down_bottom-up", "gag", "groping", "gagged", "gangbang", "orgasm", "femdom", "incest", "bukkake", "breast_out", "vaginal", "vagina", "public_indecency", "breast_sucking", "folded", "cunnilingus", "_cunnilingus", "foreskin", "bestiality", "footjob", "uterus", "womb", "flaccid", "defloration", "butt_plug", "cowgirl_position", "reverse_cowgirl_position", "squatting_cowgirl_position", "reverse_upright_straddle", "irrumatio", "deepthroat", "pokephilia", "gaping", "orgy", "cleft_of_venus", "futanari", "futasub", "futa", "cumdrip", "fingering", "vibrator", "partially_visible_vulva", "penetration", "penetrated", "cumshot", "exhibitionism", "breast_milk", "grinding", "clitoral", "urethra", "phimosis", "cervix", "impregnation", "tribadism", "molestation", "pubic_hair", "clothed_female_nude_male", "clothed_male_nude_female", "clothed_female_nude_female", "clothed_male_nude_male", "sex_machine", "milking_machine", "ovum", "chikan", "pussy_juice_drip_through_clothes", "ejaculating_while_penetrated", "suspended_congress", "reverse_suspended_congress", "spread_pussy_under_clothes", "anilingus", "reach-around", "humping", "consensual_tentacles", "tentacle_pit", "cum_in_", ],
|
7 |
-
#外観状態/外觀狀態
|
8 |
-
"Appearance Status" : ["backless", "bandaged_neck", "bleeding", "blood", "_blood", "blush", "body_writing", "bodypaint", "bottomless", "breath", "bruise", "butt_crack", "cold", "covered_mouth", "crack", "cross-section", "crotchless", "crying", "curvy", "cuts", "dirty", "dripping", "drunk", "from_mouth", "glowing", "hairy", "halterneck", "hot", "injury", "latex", "leather", "levitation", "lipstick_mark", "_markings", "makeup", "mole", "moles", "no_bra", "nosebleed", "nude", "outfit", "pantylines", "peeing", "piercing", "_piercing", "piercings", "pregnant", "public_nudity", "reverse", "_skin", "_submerged", "saliva", "scar", "scratches", "see-through", "shadow", "shibari", "sideless", "skindentation", "sleeping","tan", "soap_bubbles", "steam", "steaming_body", "stitches", "sweat", "sweatdrop", "sweaty", "tanlines", "tattoo", "tattoo", "tears", "topless", "transparent", "trefoil", "trembling", "veins", "visible_air", "wardrobe_malfunction", "wet", "x-ray", "unconscious", "handprint", ],
|
9 |
-
#動作姿勢/動作姿勢
|
10 |
-
"Action Pose" : ["afloat", "afterimage", "against_fourth_wall", "against_wall", "aiming", "all_fours", "another's_mouth", "arm_", "arm_support", "arms_", "arms_behind_back", "asphyxiation", "attack", "back", "ballet", "bara", "bathing", "battle", "bdsm", "beckoning", "bent_over", "bite_mark", "biting", "bondage", "breast_suppress", "breathing", "burning", "bust_cup", "carry", "carrying", "caught", "chained", "cheek_squash", "chewing", "cigarette", "clapping", "closed_eye", "come_hither", "cooking", "covering", "cuddling", "dancing", "_docking", "destruction", "dorsiflexion", "dreaming", "dressing", "drinking", "driving", "dropping", "eating", "exercise", "expansion", "exposure", "facing", "failure", "fallen_down", "falling", "feeding", "fetal_position", "fighting", "finger_on_trigger", "finger_to_cheek", "finger_to_mouth", "firing", "fishing", "flashing", "fleeing", "flexible", "flexing", "floating", "flying", "fourth_wall", "freediving", "frogtie", "_grab", "girl_on_top", "giving", "grabbing", "grabbing_", "gymnastics", "_hold", "hadanugi_dousa", "hairdressing", "hand_", "hand_on", "hand_on_wall", "hands_", "headpat", "hiding", "holding", "hug", "hugging", "imagining", "in_container", "in_mouth", "in_palm", "jealous", "jumping", "kabedon", "kicking", "kiss", "kissing", "kneeling", "_lift", "lactation", "laundry", "licking", "lifted_by_self", "looking", "lowleg", "lying", "melting", "midair", "moaning", "_open", "on_back", "on_bed", "on_ground", "on_lap", "on_one_knee", "one_eye_closed", "open_", "over_mouth", "own_mouth", "_peek", "_pose", "_press", "_pull", "padding", "paint", "painting_(action)", "palms_together", "pee", "peeking", "pervert", "petting", "pigeon-toed", "piggyback", "pinching", "pinky_out", "pinned", "plantar_flexion", "planted", "playing", "pocky", "pointing", "poke", "poking", "pouring", "pov", "praying", "presenting", "profanity", "pulled_by_self", "pulling", "pump_action", "punching", "_rest", "raised", "reaching", "reading", "reclining", "reverse_grip", "riding", "running", "_slip", "salute", "screaming", "seiza", "selfie", "sewing", "shaking", "shoe_dangle", "shopping", "shouting", "showering", "shushing", "singing", "sitting", "slapping", "smell", "smelling", "smoking", "smother", "solo", "spanked", "spill", "spilling", "spinning", "splashing", "split", "squatting", "squeezed", "breasts_squeezed_together", "standing", "standing_on_", "staring", "straddling", "strangling", "stretching", "surfing", "suspension", "swimming", "talking", "teardrop", "tearing_clothes", "throwing", "tied_up", "tiptoes", "toe_scrunch", "toothbrush", "trigger_discipline", "tripping", "tsundere", "turning_head", "twitching", "two-handed", "tying", "_up", "unbuttoned", "undressed", "undressing", "unsheathed", "unsheathing", "unzipped", "unzipping", "upright_straddle", "v", "V", "vore", "_wielding","wading", "walk-in", "walking", "wariza", "waving", "wedgie", "wrestling", "writing", "yawning", "yokozuwari", "_conscious", "massage", "struggling", "shrugging", "drugged", "tentacles_under_clothes", "restrained_by_tentacles", "tentacles_around_arms", "tentacles_around_legs", "restrained_legs", "restrained_tail", "restrained_arms", "tentacles_on_female", "archery", "cleaning", "tempura", "facepalm", "sadism", ],
|
11 |
-
#頭部装飾/頭部服飾
|
12 |
-
"Headwear" : ["antennae", "antlers", "aura", "bandaged_head", "bandana", "bandeau", "beanie", "beanie", "beret", "bespectacled", "blindfold", "bonnet", "_cap", "circlet", "crown", "_drill", "_drills", "diadem", "_eyewear", "ear_covers", "ear_ornament", "ear_tag", "earbuds", "earclip", "earmuffs", "earphones", "earpiece", "earring", "earrings", "eyeliner", "eyepatch", "eyewear_on_head", "facial", "fedora", "glasses", "goggles", "_headwear", "hachimaki", "hair_bobbles", "hair_ornament", "hair_rings", "hair_tie", "hairband", "hairclip", "hairpin", "hairpods", "halo", "hat", "head-mounted_display", "head_wreath", "headband", "headdress", "headgear", "headphones", "headpiece", "headset", "helm", "helmet", "hood", "kabuto_(helmet)", "kanzashi", "_mask", "maid_headdress", "mask", "mask", "mechanical_ears", "mechanical_eye", "mechanical_horns", "mob_cap", "monocle", "neck_ruff", "nightcap", "on_head", "pince-nez", "qingdai_guanmao", "scarf_over_mouth", "scrunchie", "sunglasses", "tam_o'_shanter", "tate_eboshi", "tiara", "topknot", "turban", "veil", "visor", "wig", "mitre", "tricorne", "bicorne", ],
|
13 |
-
#手部装飾/手部服飾
|
14 |
-
"Handwear" : ["arm_warmers", "armband", "armlet", "bandaged_arm", "bandaged_fingers", "bandaged_hand", "bandaged_wrist", "bangle", "bracelet", "bracelets", "bracer", "cuffs", "elbow_pads", "_gauntlets", "_glove", "_gloves", "gauntlets", "gloves", "kote", "kurokote", "mechanical_arm", "mechanical_arms", "mechanical_hands", "mittens", "mitts", "nail_polish", "prosthetic_arm", "wrist_cuffs", "wrist_guards", "wristband", "yugake", ],
|
15 |
-
#ワンピース衣装/一件式服裝
|
16 |
-
"One-Piece Outfit" : ["bodystocking", "bodysuit", "dress", "furisode", "gown", "hanfu", "jumpsuit", "kimono", "leotard", "microdress", "one-piece", "overalls", "robe", "spacesuit", "sundress", "yukata", ],
|
17 |
-
#上半身衣装/上半身服裝
|
18 |
-
"Upper Body Clothing" : ["aiguillette", "apron", "_apron", "armor", "_armor", "ascot", "babydoll", "bikini", "_bikini", "blazer", "_blazer", "blouse", "_blouse", "bowtie", "_bowtie", "bra", "_bra", "breast_curtain", "breast_curtains", "breast_pocket", "breastplate", "bustier", "camisole", "cape", "capelet", "cardigan", "center_opening", "chemise", "chest_jewel", "choker", "cloak", "coat", "coattails", "collar", "_collar", "corset", "criss-cross_halter", "crop_top", "dougi", "feather_boa", "gakuran", "hagoromo", "hanten_(clothes)", "haori", "harem_pants", "harness", "hoodie", "jacket", "_jacket", "japanese_clothes", "kappougi", "kariginu", "lapels", "lingerie", "_lingerie", "maid", "mechanical_wings", "mizu_happi", "muneate", "neckerchief", "necktie", "negligee", "nightgown", "pajamas", "_pajamas", "pauldron", "pauldrons", "plunging_neckline", "raincoat", "rei_no_himo", "sailor_collar", "sarashi", "scarf", "serafuku", "shawl", "shirt", "shoulder_", "sleepwear", "sleeve", "sleeveless", "sleeves", "_sleeves", "sode", "spaghetti_strap", "sportswear", "strapless", "suit", "sundress", "suspenders", "sweater", "swimsuit", "_top", "_torso", "t-shirt", "tabard", "tailcoat", "tank_top", "tasuki", "tie_clip", "tunic", "turtleneck", "tuxedo", "_uniform", "undershirt", "uniform", "v-neck", "vambraces", "vest", "waistcoat", ],
|
19 |
-
#下半身衣装/下半身服裝
|
20 |
-
"Lower Body Clothing" : ["bare_hips", "bloomers", "briefs", "buruma", "crotch_seam", "cutoffs", "denim", "faulds", "fundoshi", "g-string", "garter_straps", "hakama", "hip_vent", "jeans", "knee_pads", "loincloth", "mechanical_tail", "microskirt", "miniskirt", "overskirt", "panties", "pants", "pantsu", "panty_straps", "pelvic_curtain", "petticoat", "sarong", "shorts", "side_slit", "skirt", "sweatpants", "swim_trunks", "thong", "underwear", "waist_cape", ],
|
21 |
-
#足元・レッグウェア/腳與腿部服飾
|
22 |
-
"Foot & Legwear" : ["anklet", "bandaged_leg", "boot", "boots", "_footwear", "flats", "flip-flops", "geta", "greaves", "_heels", "kneehigh", "kneehighs", "_legwear", "leg_warmers", "leggings", "loafers", "mary_janes", "mechanical_legs", "okobo", "over-kneehighs", "pantyhose", "prosthetic_leg", "pumps", "_shoe", "_sock", "sandals", "shoes", "skates", "slippers", "sneakers", "socks", "spikes", "tabi", "tengu-geta", "thigh_strap", "thighhighs", "uwabaki", "zouri", "legband", "ankleband", ],
|
23 |
-
#その他の装飾/其他服飾
|
24 |
-
"Other Accessories" : ["alternate_", "anklet", "badge", "beads", "belt", "belts", "bow", "brooch", "buckle", "button", "buttons", "_clothes", "_costume", "_cutout", "casual", "charm", "clothes_writing", "clothing_aside", "costume", "cow_print", "cross", "d-pad", "double-breasted", "drawstring", "epaulettes", "fabric", "fishnets", "floral_print", "formal", "frills", "_garter", "gem", "holster", "jewelry", "_knot", "lace", "lanyard", "leash", "magatama", "mechanical_parts", "medal", "medallion", "naked_bandage", "necklace", "_ornament", "(ornament)", "o-ring", "obi", "obiage", "obijime", "_pin", "_print", "padlock", "patterned_clothing", "pendant", "piercing", "plaid", "pocket", "polka_dot", "pom_pom_(clothes)", "pom_pom_(clothes)", "pouch", "ribbon", "_ribbon", "_stripe", "_stripes", "sash", "shackles", "shimenawa", "shrug_(clothing)", "skin_tight", "spandex", "strap", "sweatband", "_trim", "tassel", "zettai_ryouiki", "zipper", ],
|
25 |
-
#表情/表情
|
26 |
-
"Facial Expression" : ["ahegao", "anger_vein", "angry", "annoyed", "confused", "drooling", "embarrassed", "expressionless", "eye_contact", "_face", "frown", "fucked_silly", "furrowed_brow", "glaring", "gloom_(expression)", "grimace", "grin", "happy", "jitome", "laughing", "_mouth", "nervous", "notice_lines", "o_o", "parted_lips", "pout", "puff_of_air", "restrained", "sad", "sanpaku", "scared", "scowl", "serious", "shaded_face", "shy", "sigh", "sleepy", "smile", "smirk", "smug", "snot", "spoken_ellipsis", "spoken_exclamation_mark", "spoken_interrobang", "spoken_question_mark", "squiggle", "surprised", "tareme", "tearing_up", "thinking", "tongue", "tongue_out", "torogao", "tsurime", "turn_pale", "wide-eyed", "wince", "worried", "heartbeat", ],
|
27 |
-
#絵文字/表情符號
|
28 |
-
"Facial Emoji" : ["!!", "!", "!?", "+++", "+_+", "...", "...?", "._.", "03:00", "0_0", ":/", ":3", ":<", ":>", ":>=", ":d", ":i", ":o", ":p", ":q", ":t", ":x", ":|", ";(", ";)", ";3", ";d", ";o", ";p", ";q", "=_=", ">:(", ">:)", ">_<", ">_o", ">o<", "?", "??", "@_@", "\m/", "\n/", "\o/", "\||/", "^^^", "^_^", "c:", "d:", "o_o", "o3o", "u_u", "w", "x", "x_x", "xd", "zzz", "|_|", ],
|
29 |
-
#頭部/頭部
|
30 |
-
"Head" : ["afro", "ahoge", "animal_ear_fluff", "_bangs", "_bun", "bald", "beard", "blunt_bangs", "blunt_ends", "bob_cut", "bowl_cut", "braid", "braids", "buzz_cut", "circle_cut", "colored_tips", "cowlick", "dot_nose", "dreadlocks", "_ear", "_ears", "_eye", "_eyes", "enpera", "eyeball", "eyebrow", "eyebrow_cut", "eyebrows", "eyelashes", "eyeshadow", "faceless", "facepaint", "facial_mark", "fang", "forehead", "freckles", "goatee", "_hair", "_horn", "_horns", "hair_", "hair_bun", "hair_flaps", "hair_intakes", "hair_tubes", "half_updo", "head_tilt", "heterochromia", "hime_cut", "hime_cut", "horns", "in_eye", "inverted_bob", "kemonomimi_mode", "lips", "mascara", "mohawk", "mouth_", "mustache", "nose", "one-eyed", "one_eye", "one_side_up", "_pupils", "parted_bangs", "pompadour", "ponytail", "ringlets", "_sclera", "sideburns", "sidecut", "sidelock", "sidelocks", "skull", "snout", "stubble", "swept_bangs", "tails", "teeth", "third_eye", "twintails", "two_side_up", "undercut", "updo", "v-shaped_eyebrows", "whiskers", "tentacle_hair", ],
|
31 |
-
#手部/手部
|
32 |
-
"Hands" : ["_arm", "_arms", "claws", "_finger", "_fingers", "fingernails", "_hand", "_nail", "_nails", "palms", "rings", "thumbs_up", ],
|
33 |
-
#上半身/上半身
|
34 |
-
"Upper Body" : ["abs", "armpit", "armpits", "backboob", "belly", "biceps", "breast_rest", "breasts", "button_gap", "cleavage", "collarbone", "dimples_of_venus", "downblouse", "flat_chest", "linea_alba", "median_furrow", "midriff", "nape", "navel", "pectorals", "ribs", "_shoulder", "_shoulders", "shoulder_blades", "sideboob", "sidetail", "spine", "stomach", "strap_gap", "toned", "underboob", "underbust", ],
|
35 |
-
#下半身/下半身
|
36 |
-
"Lower Body" : ["ankles", "ass", "barefoot", "crotch", "feet", "highleg", "hip_bones", "hooves", "kneepits", "knees", "legs", "soles", "tail", "thigh_gap", "thighlet", "thighs", "toenail", "toenails", "toes", "wide_hips", ],
|
37 |
-
#生物/生物
|
38 |
-
"Creature" : ["(animal)", "anglerfish", "animal", "bear", "bee", "bird", "bug", "butterfly", "cat", "chick", "chicken", "chinese_zodiac", "clownfish", "coral", "crab", "creature", "crow", "dog", "dove", "dragon", "duck", "eagle", "fish", "fish", "fox", "fox", "frog", "frog", "goldfish", "hamster", "horse", "jellyfish", "ladybug", "lion", "mouse", "octopus", "owl", "panda", "penguin", "pig", "pigeon", "rabbit", "rooster", "seagull", "shark", "sheep", "shrimp", "snail", "snake", "squid", "starfish", "tanuki", "tentacles", "goo_tentacles", "plant_tentacles", "crotch_tentacles", "mechanical_tentacles", "squidward_tentacles", "suction_tentacles", "penis_tentacles", "translucent_tentacles", "back_tentacles", "red_tentacles", "green_tentacles", "blue_tentacles", "black_tentacles", "pink_tentacles", "purple_tentacles", "face_tentacles", "tentacles_everywhere", "milking_tentacles", "tiger", "turtle", "weasel", "whale", "wolf", "parrot", "sparrow", "unicorn", ],
|
39 |
-
#植物/植物
|
40 |
-
"Plant" : ["bamboo", "bouquet", "branch", "bush", "cherry_blossoms", "clover", "daisy", "(flower)", "flower", "flower", "gourd", "hibiscus", "holly", "hydrangea", "leaf", "lily_pad", "lotus", "moss", "palm_leaf", "palm_tree", "petals", "plant", "plum_blossoms", "rose", "spider_lily", "sunflower", "thorns", "tree", "tulip", "vines", "wisteria", "acorn", ],
|
41 |
-
#食べ物/食物
|
42 |
-
"Food" : ["apple", "baguette", "banana", "baozi", "beans", "bento", "berry", "blueberry", "bread", "broccoli", "burger", "cabbage", "cake", "candy", "carrot", "cheese", "cherry", "chili_pepper", "chocolate", "coconut", "cookie", "corn", "cream", "crepe", "cucumber", "cucumber", "cupcake", "curry", "dango", "dessert", "doughnut", "egg", "eggplant", "_(food)", "_(fruit)", "food", "french_fries", "fruit", "grapes", "ice_cream", "icing", "lemon", "lettuce", "lollipop", "macaron", "mandarin_orange", "meat", "melon", "mochi", "mushroom", "noodles", "omelet", "omurice", "onigiri", "onion", "pancake", "parfait", "pasties", "pastry", "peach", "pineapple", "pizza", "popsicle", "potato", "pudding", "pumpkin", "radish", "ramen", "raspberry", "rice", "roasted_sweet_potato", "sandwich", "sausage", "seaweed", "skewer", "spitroast", "spring_onion", "strawberry", "sushi", "sweet_potato", "sweets", "taiyaki", "takoyaki", "tamagoyaki", "tempurakanbea", "toast", "tomato", "vegetable", "wagashi", "wagashi", "watermelon", "jam", "popcorn", ],
|
43 |
-
#飲み物/飲品
|
44 |
-
"Beverage" : ["alcohol", "beer", "coffee", "cola", "drink", "juice", "juice_box", "milk", "sake", "soda", "tea", "_tea", "whiskey", "wine", "cocktail", ],
|
45 |
-
#音楽/音樂
|
46 |
-
"Music" : ["band", "baton_(conducting)", "beamed", "cello", "concert", "drum", "drumsticks", "eighth_note", "flute", "guitar", "harp", "horn", "(instrument)", "idol", "instrument", "k-pop", "lyre", "(music)", "megaphone", "microphone", "music", "musical_note", "phonograph", "piano", "plectrum", "quarter_note", "recorder", "sixteenth_note", "sound_effects", "trumpet", "utaite", "violin", "whistle", ],
|
47 |
-
#武器・装備/武器・裝備
|
48 |
-
"Weapons & Equipment" : ["ammunition", "arrow_(projectile)", "axe", "bandolier", "baseball_bat", "beretta_92", "bolt_action", "bomb", "bullet", "bullpup", "cannon", "chainsaw", "crossbow", "dagger", "energy_sword", "explosive", "fighter_jet", "gohei", "grenade", "gun", "hammer", "handgun", "holstered", "jet", "katana", "knife", "kunai", "lance", "mallet", "nata_(tool)", "polearm", "quiver", "rapier", "revolver", "rifle", "rocket_launcher", "scabbard", "scope", "scythe", "sheath", "sheathed", "shield", "shotgun", "shuriken", "spear", "staff", "suppressor", "sword", "tank", "tantou", "torpedo", "trident", "(weapon)", "wand", "weapon", "whip", "yumi_(bow)", "h&k_hk416", "rocket_launcher", "heckler_&_koch", "_weapon", ],
|
49 |
-
#乗り物/交通器具
|
50 |
-
"Vehicles" : ["aircraft", "airplane", "bicycle", "boat", "car", "caterpillar_tracks", "flight_deck", "helicopter", "motor_vehicle", "motorcycle", "ship", "spacecraft", "spoiler_(automobile)", "train", "truck", "watercraft", "wheel", "wheelbarrow", "wheelchair", "inflatable_raft", ],
|
51 |
-
#建物/建物
|
52 |
-
"Buildings" : ["apartment", "aquarium", "architecture", "balcony", "building", "cafe", "castle", "church", "gym", "hallway", "hospital", "house", "library", "(place)", "porch", "restaurant", "restroom", "rooftop", "shop", "skyscraper", "stadium", "stage", "temple", "toilet", "tower", "train_station", "veranda", ],
|
53 |
-
#室内/室內
|
54 |
-
"Indoor" : ["bath", "bathroom", "bathtub", "bed", "bed_sheet", "bedroom", "blanket", "bookshelf", "carpet", "ceiling", "chair", "chalkboard", "classroom", "counter", "cupboard", "curtains", "cushion", "dakimakura", "desk", "door", "doorway", "drawer", "_floor", "floor", "futon", "indoors", "interior", "kitchen", "kotatsu", "locker", "mirror", "pillow", "room", "rug", "school_desk", "shelf", "shouji", "sink", "sliding_doors", "stairs", "stool", "storeroom", "table", "tatami", "throne", "window", "windowsill", "bathhouse", "chest_of_drawers", ],
|
55 |
-
#屋外/室外
|
56 |
-
"Outdoor" : ["alley", "arch", "beach", "bridge", "bus_stop", "bush", "cave", "(city)", "city", "cliff", "crescent", "crosswalk", "day", "desert", "fence", "ferris_wheel", "field", "forest", "grass", "graveyard", "hill", "lake", "lamppost", "moon", "mountain", "night", "ocean", "onsen", "outdoors", "path", "pool", "poolside", "railing", "railroad", "river", "road", "rock", "sand", "shore", "sky", "smokestack", "snow", "snowball", "snowman", "street", "sun", "sunlight", "sunset", "tent", "torii", "town", "tree", "turret", "utility_pole", "valley", "village", "waterfall", ],
|
57 |
-
#物品/物品
|
58 |
-
"Objects" : ["anchor", "android", "armchair", "(bottle)", "backpack", "bag", "ball", "balloon", "bandages", "bandaid", "bandaids", "banknote", "banner", "barcode", "barrel", "baseball", "basket", "basketball", "beachball", "bell", "bench", "binoculars", "board_game", "bone", "book", "bottle", "bowl", "box", "box_art", "briefcase", "broom", "bucket", "(chess)", "(computer)", "(computing)", "(container)", "cage", "calligraphy_brush", "camera", "can", "candle", "candlestand", "cane", "card", "cartridge", "cellphone", "chain", "chandelier", "chess", "chess_piece", "choko_(cup)", "chopsticks", "cigar", "clipboard", "clock", "clothesline", "coin", "comb", "computer", "condom", "controller", "cosmetics", "couch", "cowbell", "crazy_straw", "cup", "cutting_board", "dice", "digital_media_player", "doll", "drawing_tablet", "drinking_straw", "easel", "electric_fan", "emblem", "envelope", "eraser", "feathers", "figure", "fire", "fishing_rod", "flag", "flask", "folding_fan", "fork", "frying_pan", "(gemstone)", "game_console", "gears", "gemstone", "gift", "glass", "glowstick", "gold", "handbag", "handcuffs", "handheld_game_console", "hose", "id_card", "innertube", "iphone", "jack-o'-lantern", "jar", "joystick", "key", "keychain", "kiseru", "ladder", "ladle", "lamp", "lantern", "laptop", "letter", "letterboxed", "lifebuoy", "lipstick", "liquid", "lock", "lotion", "_machine", "map", "marker", "model_kit", "money", "monitor", "mop", "mug", "needle", "newspaper", "nintendo", "nintendo_switch", "notebook", "(object)", "ofuda", "orb", "origami", "(playing_card)", "pack", "paddle", "paintbrush", "pan", "paper", "parasol", "patch", "pc", "pen", "pencil", "pencil", "pendant_watch", "phone", "pill", "pinwheel", "plate", "playstation", "pocket_watch", "pointer", "poke_ball", "pole", "quill", "racket", "randoseru", "remote_control", "ring", "rope", "sack", "saddle", "sakazuki", "satchel", "saucer", "scissors", "scroll", "seashell", "seatbelt", "shell", "shide", "shopping_cart", "shovel", "shower_head", "silk", "sketchbook", "smartphone", "soap", "sparkler", "spatula", "speaker", "spoon", "statue", "stethoscope", "stick", "sticker", "stopwatch", "string", "stuffed_", "stylus", "suction_cups", "suitcase", "surfboard", "syringe", "talisman", "tanzaku", "tape", "teacup", "teapot", "teddy_bear", "television", "test_tube", "tiles", "tokkuri", "tombstone", "torch", "towel", "toy", "traffic_cone", "tray", "treasure_chest", "uchiwa", "umbrella", "vase", "vial", "video_game", "viewfinder", "volleyball", "wallet", "watch", "watch", "whisk", "whiteboard", "wreath", "wrench", "wristwatch", "yunomi", "ace_of_hearts", "inkwell", "compass", "ipod", "sunscreen", "rocket", "cobblestone", ],
|
59 |
-
#キャラクター設定/角色設定
|
60 |
-
"Character Design" : ["+boys", "+girls", "1other", "39", "_boys", "_challenge", "_connection", "_female", "_fur", "_girls", "_interface", "_male", "_man", "_person", "abyssal_ship", "age_difference", "aged_down", "aged_up", "albino", "alien", "alternate_muscle_size", "ambiguous_gender", "amputee", "androgynous", "angel", "animalization", "ass-to-ass", "assault_visor", "au_ra", "baby", "bartender", "beak", "bishounen", "borrowed_character", "boxers", "boy", "breast_envy", "breathing_fire", "bride", "broken", "brother_and_sister", "brothers", "camouflage", "cheating_(relationship)", "cheerleader", "chibi", "child", "clone", "command_spell", "comparison", "contemporary", "corpse", "corruption", "cosplay", "couple", "creature_and_personification", "crossdressing", "crossover", "cyberpunk", "cyborg", "cyclops", "damaged", "dancer", "danmaku", "darkness", "death", "defeat", "demon", "disembodied_", "draph", "drone", "duel", "dwarf", "egyptian", "electricity", "elezen", "elf", "enmaided", "erune", "everyone", "evolutionary_line", "expressions", "fairy", "family", "fangs", "fantasy", "fashion", "fat", "father_and_daughter", "father_and_son", "fewer_digits", "fins", "flashback", "fluffy", "fumo_(doll)", "furry", "fusion", "fuuin_no_tsue", "gameplay_mechanics", "genderswap", "ghost", "giant", "giantess", "gibson_les_paul", "girl", "goblin", "groom", "guro", "gyaru", "habit", "harem", "harpy", "harvin", "heads_together", "health_bar", "height_difference", "hitodama", "horror_(theme)", "humanization", "husband_and_wife", "hydrokinesis", "hypnosis", "hyur", "idol", "insignia", "instant_loss", "interracial", "interspecies", "japari_bun", "jeweled_branch_of_hourai", "jiangshi", "jirai_kei", "joints", "karakasa_obake", "keyhole", "kitsune", "knight", "kodona", "kogal", "kyuubi", "lamia", "left-handed", "loli", "lolita", "look-alike", "machinery", "magic", "male_focus", "manly", "matching_outfits", "mature_female", "mecha", "mermaid", "meta", "miko", "milestone_celebration", "military", "mind_control", "miniboy", "minigirl", "miqo'te", "monster", "monsterification", "mother_and_daughter", "mother_and_son", "multiple_others", "muscular", "nanodesu_(phrase)", "narrow_waist", "nekomata", "netorare", "ninja", "no_humans", "nontraditional", "nun", "nurse", "object_namesake", "obliques", "office_lady", "old", "on_body", "onee-shota", "oni", "orc", "others", "otoko_no_ko", "oversized_object", "paint_splatter", "pantyshot", "pawpads", "persona", "personality", "personification", "pet_play", "petite", "pirate", "playboy_bunny", "player_2", "plugsuit", "plump", "poi", "pokemon", "police", "policewoman", "pom_pom_(cheerleading)", "princess", "prosthesis", "pun", "puppet", "race_queen", "radio_antenna", "real_life_insert", "redesign", "reverse_trap", "rigging", "robot", "rod_of_remorse", "sailor", "salaryman", "samurai", "sangvis_ferri", "scales", "scene_reference", "school", "sheikah", "shota", "shrine", "siblings", "side-by-side", "sidesaddle", "sisters", "size_difference", "skeleton", "skinny", "slave", "slime_(substance)", "soldier", "spiked_shell", "spokencharacter", "steampunk", "streetwear", "striker_unit", "strongman", "submerged", "suggestive", "super_saiyan", "superhero", "surreal", "take_your_pick", "tall", "talons", "taur", "teacher", "team_rocket", "three-dimensional_maneuver_gear", "time_paradox", "tomboy", "traditional_youkai", "transformation", "trick_or_treat", "tusks", "twins", "ufo", "under_covers", "v-fin", "v-fin", "vampire", "virtual_youtuber", "waitress", "watching_television", "wedding", "what", "when_you_see_it", "wife_and_wife", "wing", "wings", "witch", "world_war_ii", "yandere", "year_of", "yes", "yin_yang", "yordle", "you're_doing_it_wrong", "you_gonna_get_raped", "yukkuri_shiteitte_ne", "yuri", "zombie", "(alice_in_wonderland)", "(arknights)", "(blue_archive)", "(cosplay)", "(creature)", "(emblem)", "(evangelion)", "(fate)", "(fate/stay_night)", "(ff11)", "(fire_emblem)", "(genshin_impact)", "(grimm)", "(houseki_no_kuni)", "(hyouka)", "(idolmaster)", "(jojo)", "(kancolle)", "(kantai_collection)", "(kill_la_kill)", "(league_of_legends)", "(legends)", "(lyomsnpmp)", "(machimazo)", "(madoka_magica)", "(mecha)", "(meme)", "(nier:automata)", "(organ)", "(overwatch)", "(pokemon)", "(project_moon)", "(project_sekai)", "(sao)", "(senran_kagura)", "(splatoon)", "(touhou)", "(tsukumo_sana)", "(youkai_watch)", "(yu-gi-oh!_gx)", "(zelda)", "sextuplets", "imperial_japanese_army", "extra_faces", "_miku", ],
|
61 |
-
#構図/構圖
|
62 |
-
"Composition" : ["abstract", "anime_coloring", "animification", "back-to-back", "bad_anatomy", "blurry", "border", "bound", "cameo", "cheek-to-cheek", "chromatic_aberration", "close-up", "collage", "color_guide", "colorful", "comic", "contrapposto", "cover", "cowboy_shot", "crosshatching", "depth_of_field", "dominatrix", "dutch_angle", "_focus", "face-to-face", "fake_screenshot", "film_grain", "fisheye", "flat_color", "foreshortening", "from_above", "from_behind", "from_below", "from_side", "full_body", "glitch", "greyscale", "halftone", "head_only", "heads-up_display", "high_contrast", "horizon", "_inset", "inset", "jaggy_lines", "1koma", "2koma", "3koma", "4koma", "5koma", "leaning", "leaning_forward", "leaning_to_the_side", "left-to-right_manga", "lens_flare", "limited_palette", "lineart", "lineup", "lower_body", "(medium)", "marker_(medium)", "meme", "mixed_media", "monochrome", "multiple_views", "muted_color", "oekaki", "on_side", "out_of_frame", "outline", "painting", "parody", "partially_colored", "partially_underwater_shot", "perspective", "photorealistic", "picture_frame", "pillarboxed", "portrait", "poster_(object)", "product_placement", "profile", "realistic", "recording", "retro_artstyle", "(style)", "_style", "sandwiched", "science_fiction", "sepia", "shikishi", "side-by-side", "sideways", "sideways_glance", "silhouette", "sketch", "spot_color", "still_life", "straight-on", "symmetry", "(texture)", "tachi-e", "taking_picture", "tegaki", "too_many", "traditional_media", "turnaround", "underwater", "upper_body", "upside-down", "upskirt", "variations", "wide_shot", "_design", "symbolism", "rounded_corners", "surrounded", ],
|
63 |
-
#季節/季節
|
64 |
-
"Season" : ["akeome", "anniversary", "autumn", "birthday", "christmas", "_day", "festival", "halloween", "kotoyoro", "nengajou", "new_year", "spring_(season)", "summer", "tanabata", "valentine", "winter", ],
|
65 |
-
#背景/背景
|
66 |
-
"Background" : ["_background", "backlighting", "bloom", "bokeh", "brick_wall", "bubble", "cable", "caustics", "cityscape", "cloud", "confetti", "constellation", "contrail", "crowd", "crystal", "dark", "debris", "dusk", "dust", "egasumi", "embers", "emphasis_lines", "energy", "evening", "explosion", "fireworks", "fog", "footprints", "glint", "graffiti", "ice", "industrial_pipe", "landscape", "light", "light_particles", "light_rays", "lightning", "lights", "moonlight", "motion_blur", "motion_lines", "mountainous_horizon", "nature", "(planet)", "pagoda", "people", "pillar", "planet", "power_lines", "puddle", "rain", "rainbow", "reflection", "ripples", "rubble", "ruins", "scenery", "shade", "shooting_star", "sidelighting", "smoke", "snowflakes", "snowing", "space", "sparkle", "sparks", "speed_lines", "spider_web", "spotlight", "star_(sky)", "stone_wall", "sunbeam", "sunburst", "sunrise", "_theme", "tile_wall", "twilight", "wall_clock", "wall_of_text", "water", "waves", "wind", "wire", "wooden_wall", "lighthouse", ],
|
67 |
-
# パターン/圖案
|
68 |
-
"Patterns" : ["arrow", "bass_clef", "blank_censor", "circle", "cube", "heart", "hexagon", "hexagram", "light_censor", "(pattern)", "pattern", "pentagram", "roman_numeral", "(shape)", "(symbol)", "shape", "sign", "symbol", "tally", "treble_clef", "triangle", "tube", "yagasuri", ],
|
69 |
-
#検閲/審查
|
70 |
-
"Censorship" : ["blur_censor", "_censor", "_censoring", "censored", "character_censor", "convenient", "hair_censor", "heart_censor", "identity_censor", "maebari", "novelty_censor", "soap_censor", "steam_censor", "tail_censor", "uncensored", ],
|
71 |
-
#その他/其他
|
72 |
-
"Others" : ["2007", "2008", "2009", "2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017", "2018", "2019", "2020", "2021", "2022", "2023", "2024", "artist", "artist_name", "artistic_error", "asian", "(company)", "character_name", "content_rating", "copyright", "cover_page", "dated", "english_text", "japan", "layer", "logo", "name", "numbered", "page_number", "pixiv_id", "ranguage", "reference_sheet", "signature", "speech_bubble", "subtitled", "text", "thank_you", "typo", "username", "wallpaper", "watermark", "web_address", "screwdriver", "translated", ],
|
73 |
-
"Quality Tags" : ["masterpiece", "_quality", "highres", "absurdres", "ultra-detailed", "lowres", ],
|
74 |
-
}
|
75 |
-
|
76 |
-
reversed_categories = {value: key for key, values in categories.items() for value in values}
|
77 |
-
|
78 |
-
# Precompute keyword lengths
|
79 |
-
keyword_lengths = {keyword: len(keyword) for keyword in reversed_categories}
|
80 |
-
|
81 |
-
# Trie for efficient keyword matching
|
82 |
-
class TrieNode:
|
83 |
-
def __init__(self):
|
84 |
-
self.children = {}
|
85 |
-
self.category = None
|
86 |
-
|
87 |
-
def build_trie(keywords):
|
88 |
-
root = TrieNode()
|
89 |
-
for keyword, category in reversed_categories.items():
|
90 |
-
node = root
|
91 |
-
for char in keyword:
|
92 |
-
if char not in node.children:
|
93 |
-
node.children[char] = TrieNode()
|
94 |
-
node = node.children[char]
|
95 |
-
node.category = category
|
96 |
-
return root
|
97 |
-
|
98 |
-
trie_root = build_trie(reversed_categories)
|
99 |
-
|
100 |
-
def find_category(trie_root, tag):
|
101 |
-
node = trie_root
|
102 |
-
for char in tag:
|
103 |
-
if char in node.children:
|
104 |
-
node = node.children[char]
|
105 |
-
if node.category:
|
106 |
-
return node.category
|
107 |
-
else:
|
108 |
-
break
|
109 |
-
return None
|
110 |
-
|
111 |
-
def classify_tags(tags: list[str], local_test: bool = False):
|
112 |
-
# Dictionary for automatic classification
|
113 |
-
classified_tags: defaultdict[str, list] = defaultdict(list)
|
114 |
-
fuzzy_match_tags: defaultdict[str, list] = defaultdict(list)
|
115 |
-
unclassified_tags: list[str] = []
|
116 |
-
|
117 |
-
# Logic for automatic grouping
|
118 |
-
for tag in tags:
|
119 |
-
classified = False
|
120 |
-
tag_new = tag.replace(" ", "_").replace("-", "_").replace("\\(", "(").replace("\\)", ")") # Replace spaces in source tags with underscores
|
121 |
-
|
122 |
-
# Exact match using the trie
|
123 |
-
category = find_category(trie_root, tag_new)
|
124 |
-
if category:
|
125 |
-
classified = True
|
126 |
-
else:
|
127 |
-
# Fuzzy match
|
128 |
-
tag_parts = tag_new.split("_")
|
129 |
-
for keyword, keyword_length in keyword_lengths.items():
|
130 |
-
if keyword in tag_new and keyword_length > 3: # Adjust the threshold if needed
|
131 |
-
classified = True
|
132 |
-
category = reversed_categories[keyword]
|
133 |
-
break
|
134 |
-
|
135 |
-
if classified and tag not in classified_tags[category]: # Avoid duplicates
|
136 |
-
classified_tags[category].append(tag)
|
137 |
-
elif not classified and tag not in unclassified_tags:
|
138 |
-
unclassified_tags.append(tag) # Unclassified tags
|
139 |
-
|
140 |
-
if local_test:
|
141 |
-
# Output the grouping result
|
142 |
-
for category, tags in classified_tags.items():
|
143 |
-
print(f"{category}:")
|
144 |
-
print(", ".join(tags))
|
145 |
-
print()
|
146 |
-
|
147 |
-
print()
|
148 |
-
print("Fuzzy match:")
|
149 |
-
for category, tags in fuzzy_match_tags.items():
|
150 |
-
print(f"{category}:")
|
151 |
-
print(", ".join(tags))
|
152 |
-
print()
|
153 |
-
print()
|
154 |
-
|
155 |
-
if len(unclassified_tags) > 0:
|
156 |
-
print(f"\nUnclassified tags: {len(unclassified_tags)}")
|
157 |
-
print(f"{unclassified_tags[:200]}") # Display some unclassified tags
|
158 |
-
|
159 |
-
return classified_tags, unclassified_tags
|
160 |
-
|
161 |
-
# Code for "Tag Categorizer" tab
|
162 |
-
def process_tags(input_tags: str):
|
163 |
-
#
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import defaultdict
|
2 |
+
import re
|
3 |
+
# Define grouping rules (categories and keywords)
|
4 |
+
# Provided categories and reversed_categories
|
5 |
+
categories = {
|
6 |
+
"Explicit" : ["sex", "69", "paizuri", "cum", "precum", "areola_slip", "hetero", "erection", "oral", "fellatio", "yaoi", "ejaculation", "ejaculating", "masturbation", "handjob", "bulge", "rape", "_rape", "doggystyle", "threesome", "missionary", "object_insertion", "nipple", "nipples", "pussy", "anus", "penis", "groin", "testicles", "testicle", "anal", "cameltoe", "areolae", "dildo", "clitoris", "top-down_bottom-up", "gag", "groping", "gagged", "gangbang", "orgasm", "femdom", "incest", "bukkake", "breast_out", "vaginal", "vagina", "public_indecency", "breast_sucking", "folded", "cunnilingus", "_cunnilingus", "foreskin", "bestiality", "footjob", "uterus", "womb", "flaccid", "defloration", "butt_plug", "cowgirl_position", "reverse_cowgirl_position", "squatting_cowgirl_position", "reverse_upright_straddle", "irrumatio", "deepthroat", "pokephilia", "gaping", "orgy", "cleft_of_venus", "futanari", "futasub", "futa", "cumdrip", "fingering", "vibrator", "partially_visible_vulva", "penetration", "penetrated", "cumshot", "exhibitionism", "breast_milk", "grinding", "clitoral", "urethra", "phimosis", "cervix", "impregnation", "tribadism", "molestation", "pubic_hair", "clothed_female_nude_male", "clothed_male_nude_female", "clothed_female_nude_female", "clothed_male_nude_male", "sex_machine", "milking_machine", "ovum", "chikan", "pussy_juice_drip_through_clothes", "ejaculating_while_penetrated", "suspended_congress", "reverse_suspended_congress", "spread_pussy_under_clothes", "anilingus", "reach-around", "humping", "consensual_tentacles", "tentacle_pit", "cum_in_", ],
|
7 |
+
#外観状態/外觀狀態
|
8 |
+
"Appearance Status" : ["backless", "bandaged_neck", "bleeding", "blood", "_blood", "blush", "body_writing", "bodypaint", "bottomless", "breath", "bruise", "butt_crack", "cold", "covered_mouth", "crack", "cross-section", "crotchless", "crying", "curvy", "cuts", "dirty", "dripping", "drunk", "from_mouth", "glowing", "hairy", "halterneck", "hot", "injury", "latex", "leather", "levitation", "lipstick_mark", "_markings", "makeup", "mole", "moles", "no_bra", "nosebleed", "nude", "outfit", "pantylines", "peeing", "piercing", "_piercing", "piercings", "pregnant", "public_nudity", "reverse", "_skin", "_submerged", "saliva", "scar", "scratches", "see-through", "shadow", "shibari", "sideless", "skindentation", "sleeping","tan", "soap_bubbles", "steam", "steaming_body", "stitches", "sweat", "sweatdrop", "sweaty", "tanlines", "tattoo", "tattoo", "tears", "topless", "transparent", "trefoil", "trembling", "veins", "visible_air", "wardrobe_malfunction", "wet", "x-ray", "unconscious", "handprint", ],
|
9 |
+
#動作姿勢/動作姿勢
|
10 |
+
"Action Pose" : ["afloat", "afterimage", "against_fourth_wall", "against_wall", "aiming", "all_fours", "another's_mouth", "arm_", "arm_support", "arms_", "arms_behind_back", "asphyxiation", "attack", "back", "ballet", "bara", "bathing", "battle", "bdsm", "beckoning", "bent_over", "bite_mark", "biting", "bondage", "breast_suppress", "breathing", "burning", "bust_cup", "carry", "carrying", "caught", "chained", "cheek_squash", "chewing", "cigarette", "clapping", "closed_eye", "come_hither", "cooking", "covering", "cuddling", "dancing", "_docking", "destruction", "dorsiflexion", "dreaming", "dressing", "drinking", "driving", "dropping", "eating", "exercise", "expansion", "exposure", "facing", "failure", "fallen_down", "falling", "feeding", "fetal_position", "fighting", "finger_on_trigger", "finger_to_cheek", "finger_to_mouth", "firing", "fishing", "flashing", "fleeing", "flexible", "flexing", "floating", "flying", "fourth_wall", "freediving", "frogtie", "_grab", "girl_on_top", "giving", "grabbing", "grabbing_", "gymnastics", "_hold", "hadanugi_dousa", "hairdressing", "hand_", "hand_on", "hand_on_wall", "hands_", "headpat", "hiding", "holding", "hug", "hugging", "imagining", "in_container", "in_mouth", "in_palm", "jealous", "jumping", "kabedon", "kicking", "kiss", "kissing", "kneeling", "_lift", "lactation", "laundry", "licking", "lifted_by_self", "looking", "lowleg", "lying", "melting", "midair", "moaning", "_open", "on_back", "on_bed", "on_ground", "on_lap", "on_one_knee", "one_eye_closed", "open_", "over_mouth", "own_mouth", "_peek", "_pose", "_press", "_pull", "padding", "paint", "painting_(action)", "palms_together", "pee", "peeking", "pervert", "petting", "pigeon-toed", "piggyback", "pinching", "pinky_out", "pinned", "plantar_flexion", "planted", "playing", "pocky", "pointing", "poke", "poking", "pouring", "pov", "praying", "presenting", "profanity", "pulled_by_self", "pulling", "pump_action", "punching", "_rest", "raised", "reaching", "reading", "reclining", "reverse_grip", "riding", "running", "_slip", "salute", "screaming", "seiza", "selfie", "sewing", "shaking", "shoe_dangle", "shopping", "shouting", "showering", "shushing", "singing", "sitting", "slapping", "smell", "smelling", "smoking", "smother", "solo", "spanked", "spill", "spilling", "spinning", "splashing", "split", "squatting", "squeezed", "breasts_squeezed_together", "standing", "standing_on_", "staring", "straddling", "strangling", "stretching", "surfing", "suspension", "swimming", "talking", "teardrop", "tearing_clothes", "throwing", "tied_up", "tiptoes", "toe_scrunch", "toothbrush", "trigger_discipline", "tripping", "tsundere", "turning_head", "twitching", "two-handed", "tying", "_up", "unbuttoned", "undressed", "undressing", "unsheathed", "unsheathing", "unzipped", "unzipping", "upright_straddle", "v", "V", "vore", "_wielding","wading", "walk-in", "walking", "wariza", "waving", "wedgie", "wrestling", "writing", "yawning", "yokozuwari", "_conscious", "massage", "struggling", "shrugging", "drugged", "tentacles_under_clothes", "restrained_by_tentacles", "tentacles_around_arms", "tentacles_around_legs", "restrained_legs", "restrained_tail", "restrained_arms", "tentacles_on_female", "archery", "cleaning", "tempura", "facepalm", "sadism", ],
|
11 |
+
#頭部装飾/頭部服飾
|
12 |
+
"Headwear" : ["antennae", "antlers", "aura", "bandaged_head", "bandana", "bandeau", "beanie", "beanie", "beret", "bespectacled", "blindfold", "bonnet", "_cap", "circlet", "crown", "_drill", "_drills", "diadem", "_eyewear", "ear_covers", "ear_ornament", "ear_tag", "earbuds", "earclip", "earmuffs", "earphones", "earpiece", "earring", "earrings", "eyeliner", "eyepatch", "eyewear_on_head", "facial", "fedora", "glasses", "goggles", "_headwear", "hachimaki", "hair_bobbles", "hair_ornament", "hair_rings", "hair_tie", "hairband", "hairclip", "hairpin", "hairpods", "halo", "hat", "head-mounted_display", "head_wreath", "headband", "headdress", "headgear", "headphones", "headpiece", "headset", "helm", "helmet", "hood", "kabuto_(helmet)", "kanzashi", "_mask", "maid_headdress", "mask", "mask", "mechanical_ears", "mechanical_eye", "mechanical_horns", "mob_cap", "monocle", "neck_ruff", "nightcap", "on_head", "pince-nez", "qingdai_guanmao", "scarf_over_mouth", "scrunchie", "sunglasses", "tam_o'_shanter", "tate_eboshi", "tiara", "topknot", "turban", "veil", "visor", "wig", "mitre", "tricorne", "bicorne", ],
|
13 |
+
#手部装飾/手部服飾
|
14 |
+
"Handwear" : ["arm_warmers", "armband", "armlet", "bandaged_arm", "bandaged_fingers", "bandaged_hand", "bandaged_wrist", "bangle", "bracelet", "bracelets", "bracer", "cuffs", "elbow_pads", "_gauntlets", "_glove", "_gloves", "gauntlets", "gloves", "kote", "kurokote", "mechanical_arm", "mechanical_arms", "mechanical_hands", "mittens", "mitts", "nail_polish", "prosthetic_arm", "wrist_cuffs", "wrist_guards", "wristband", "yugake", ],
|
15 |
+
#ワンピース衣装/一件式服裝
|
16 |
+
"One-Piece Outfit" : ["bodystocking", "bodysuit", "dress", "furisode", "gown", "hanfu", "jumpsuit", "kimono", "leotard", "microdress", "one-piece", "overalls", "robe", "spacesuit", "sundress", "yukata", ],
|
17 |
+
#上半身衣装/上半身服裝
|
18 |
+
"Upper Body Clothing" : ["aiguillette", "apron", "_apron", "armor", "_armor", "ascot", "babydoll", "bikini", "_bikini", "blazer", "_blazer", "blouse", "_blouse", "bowtie", "_bowtie", "bra", "_bra", "breast_curtain", "breast_curtains", "breast_pocket", "breastplate", "bustier", "camisole", "cape", "capelet", "cardigan", "center_opening", "chemise", "chest_jewel", "choker", "cloak", "coat", "coattails", "collar", "_collar", "corset", "criss-cross_halter", "crop_top", "dougi", "feather_boa", "gakuran", "hagoromo", "hanten_(clothes)", "haori", "harem_pants", "harness", "hoodie", "jacket", "_jacket", "japanese_clothes", "kappougi", "kariginu", "lapels", "lingerie", "_lingerie", "maid", "mechanical_wings", "mizu_happi", "muneate", "neckerchief", "necktie", "negligee", "nightgown", "pajamas", "_pajamas", "pauldron", "pauldrons", "plunging_neckline", "raincoat", "rei_no_himo", "sailor_collar", "sarashi", "scarf", "serafuku", "shawl", "shirt", "shoulder_", "sleepwear", "sleeve", "sleeveless", "sleeves", "_sleeves", "sode", "spaghetti_strap", "sportswear", "strapless", "suit", "sundress", "suspenders", "sweater", "swimsuit", "_top", "_torso", "t-shirt", "tabard", "tailcoat", "tank_top", "tasuki", "tie_clip", "tunic", "turtleneck", "tuxedo", "_uniform", "undershirt", "uniform", "v-neck", "vambraces", "vest", "waistcoat", ],
|
19 |
+
#下半身衣装/下半身服裝
|
20 |
+
"Lower Body Clothing" : ["bare_hips", "bloomers", "briefs", "buruma", "crotch_seam", "cutoffs", "denim", "faulds", "fundoshi", "g-string", "garter_straps", "hakama", "hip_vent", "jeans", "knee_pads", "loincloth", "mechanical_tail", "microskirt", "miniskirt", "overskirt", "panties", "pants", "pantsu", "panty_straps", "pelvic_curtain", "petticoat", "sarong", "shorts", "side_slit", "skirt", "sweatpants", "swim_trunks", "thong", "underwear", "waist_cape", ],
|
21 |
+
#足元・レッグウェア/腳與腿部服飾
|
22 |
+
"Foot & Legwear" : ["anklet", "bandaged_leg", "boot", "boots", "_footwear", "flats", "flip-flops", "geta", "greaves", "_heels", "kneehigh", "kneehighs", "_legwear", "leg_warmers", "leggings", "loafers", "mary_janes", "mechanical_legs", "okobo", "over-kneehighs", "pantyhose", "prosthetic_leg", "pumps", "_shoe", "_sock", "sandals", "shoes", "skates", "slippers", "sneakers", "socks", "spikes", "tabi", "tengu-geta", "thigh_strap", "thighhighs", "uwabaki", "zouri", "legband", "ankleband", ],
|
23 |
+
#その他の装飾/其他服飾
|
24 |
+
"Other Accessories" : ["alternate_", "anklet", "badge", "beads", "belt", "belts", "bow", "brooch", "buckle", "button", "buttons", "_clothes", "_costume", "_cutout", "casual", "charm", "clothes_writing", "clothing_aside", "costume", "cow_print", "cross", "d-pad", "double-breasted", "drawstring", "epaulettes", "fabric", "fishnets", "floral_print", "formal", "frills", "_garter", "gem", "holster", "jewelry", "_knot", "lace", "lanyard", "leash", "magatama", "mechanical_parts", "medal", "medallion", "naked_bandage", "necklace", "_ornament", "(ornament)", "o-ring", "obi", "obiage", "obijime", "_pin", "_print", "padlock", "patterned_clothing", "pendant", "piercing", "plaid", "pocket", "polka_dot", "pom_pom_(clothes)", "pom_pom_(clothes)", "pouch", "ribbon", "_ribbon", "_stripe", "_stripes", "sash", "shackles", "shimenawa", "shrug_(clothing)", "skin_tight", "spandex", "strap", "sweatband", "_trim", "tassel", "zettai_ryouiki", "zipper", ],
|
25 |
+
#表情/表情
|
26 |
+
"Facial Expression" : ["ahegao", "anger_vein", "angry", "annoyed", "confused", "drooling", "embarrassed", "expressionless", "eye_contact", "_face", "frown", "fucked_silly", "furrowed_brow", "glaring", "gloom_(expression)", "grimace", "grin", "happy", "jitome", "laughing", "_mouth", "nervous", "notice_lines", "o_o", "parted_lips", "pout", "puff_of_air", "restrained", "sad", "sanpaku", "scared", "scowl", "serious", "shaded_face", "shy", "sigh", "sleepy", "smile", "smirk", "smug", "snot", "spoken_ellipsis", "spoken_exclamation_mark", "spoken_interrobang", "spoken_question_mark", "squiggle", "surprised", "tareme", "tearing_up", "thinking", "tongue", "tongue_out", "torogao", "tsurime", "turn_pale", "wide-eyed", "wince", "worried", "heartbeat", ],
|
27 |
+
#絵文字/表情符號
|
28 |
+
"Facial Emoji" : ["!!", "!", "!?", "+++", "+_+", "...", "...?", "._.", "03:00", "0_0", ":/", ":3", ":<", ":>", ":>=", ":d", ":i", ":o", ":p", ":q", ":t", ":x", ":|", ";(", ";)", ";3", ";d", ";o", ";p", ";q", "=_=", ">:(", ">:)", ">_<", ">_o", ">o<", "?", "??", "@_@", "\m/", "\n/", "\o/", "\||/", "^^^", "^_^", "c:", "d:", "o_o", "o3o", "u_u", "w", "x", "x_x", "xd", "zzz", "|_|", ],
|
29 |
+
#頭部/頭部
|
30 |
+
"Head" : ["afro", "ahoge", "animal_ear_fluff", "_bangs", "_bun", "bald", "beard", "blunt_bangs", "blunt_ends", "bob_cut", "bowl_cut", "braid", "braids", "buzz_cut", "circle_cut", "colored_tips", "cowlick", "dot_nose", "dreadlocks", "_ear", "_ears", "_eye", "_eyes", "enpera", "eyeball", "eyebrow", "eyebrow_cut", "eyebrows", "eyelashes", "eyeshadow", "faceless", "facepaint", "facial_mark", "fang", "forehead", "freckles", "goatee", "_hair", "_horn", "_horns", "hair_", "hair_bun", "hair_flaps", "hair_intakes", "hair_tubes", "half_updo", "head_tilt", "heterochromia", "hime_cut", "hime_cut", "horns", "in_eye", "inverted_bob", "kemonomimi_mode", "lips", "mascara", "mohawk", "mouth_", "mustache", "nose", "one-eyed", "one_eye", "one_side_up", "_pupils", "parted_bangs", "pompadour", "ponytail", "ringlets", "_sclera", "sideburns", "sidecut", "sidelock", "sidelocks", "skull", "snout", "stubble", "swept_bangs", "tails", "teeth", "third_eye", "twintails", "two_side_up", "undercut", "updo", "v-shaped_eyebrows", "whiskers", "tentacle_hair", ],
|
31 |
+
#手部/手部
|
32 |
+
"Hands" : ["_arm", "_arms", "claws", "_finger", "_fingers", "fingernails", "_hand", "_nail", "_nails", "palms", "rings", "thumbs_up", ],
|
33 |
+
#上半身/上半身
|
34 |
+
"Upper Body" : ["abs", "armpit", "armpits", "backboob", "belly", "biceps", "breast_rest", "breasts", "button_gap", "cleavage", "collarbone", "dimples_of_venus", "downblouse", "flat_chest", "linea_alba", "median_furrow", "midriff", "nape", "navel", "pectorals", "ribs", "_shoulder", "_shoulders", "shoulder_blades", "sideboob", "sidetail", "spine", "stomach", "strap_gap", "toned", "underboob", "underbust", ],
|
35 |
+
#下半身/下半身
|
36 |
+
"Lower Body" : ["ankles", "ass", "barefoot", "crotch", "feet", "highleg", "hip_bones", "hooves", "kneepits", "knees", "legs", "soles", "tail", "thigh_gap", "thighlet", "thighs", "toenail", "toenails", "toes", "wide_hips", ],
|
37 |
+
#生物/生物
|
38 |
+
"Creature" : ["(animal)", "anglerfish", "animal", "bear", "bee", "bird", "bug", "butterfly", "cat", "chick", "chicken", "chinese_zodiac", "clownfish", "coral", "crab", "creature", "crow", "dog", "dove", "dragon", "duck", "eagle", "fish", "fish", "fox", "fox", "frog", "frog", "goldfish", "hamster", "horse", "jellyfish", "ladybug", "lion", "mouse", "octopus", "owl", "panda", "penguin", "pig", "pigeon", "rabbit", "rooster", "seagull", "shark", "sheep", "shrimp", "snail", "snake", "squid", "starfish", "tanuki", "tentacles", "goo_tentacles", "plant_tentacles", "crotch_tentacles", "mechanical_tentacles", "squidward_tentacles", "suction_tentacles", "penis_tentacles", "translucent_tentacles", "back_tentacles", "red_tentacles", "green_tentacles", "blue_tentacles", "black_tentacles", "pink_tentacles", "purple_tentacles", "face_tentacles", "tentacles_everywhere", "milking_tentacles", "tiger", "turtle", "weasel", "whale", "wolf", "parrot", "sparrow", "unicorn", ],
|
39 |
+
#植物/植物
|
40 |
+
"Plant" : ["bamboo", "bouquet", "branch", "bush", "cherry_blossoms", "clover", "daisy", "(flower)", "flower", "flower", "gourd", "hibiscus", "holly", "hydrangea", "leaf", "lily_pad", "lotus", "moss", "palm_leaf", "palm_tree", "petals", "plant", "plum_blossoms", "rose", "spider_lily", "sunflower", "thorns", "tree", "tulip", "vines", "wisteria", "acorn", ],
|
41 |
+
#食べ物/食物
|
42 |
+
"Food" : ["apple", "baguette", "banana", "baozi", "beans", "bento", "berry", "blueberry", "bread", "broccoli", "burger", "cabbage", "cake", "candy", "carrot", "cheese", "cherry", "chili_pepper", "chocolate", "coconut", "cookie", "corn", "cream", "crepe", "cucumber", "cucumber", "cupcake", "curry", "dango", "dessert", "doughnut", "egg", "eggplant", "_(food)", "_(fruit)", "food", "french_fries", "fruit", "grapes", "ice_cream", "icing", "lemon", "lettuce", "lollipop", "macaron", "mandarin_orange", "meat", "melon", "mochi", "mushroom", "noodles", "omelet", "omurice", "onigiri", "onion", "pancake", "parfait", "pasties", "pastry", "peach", "pineapple", "pizza", "popsicle", "potato", "pudding", "pumpkin", "radish", "ramen", "raspberry", "rice", "roasted_sweet_potato", "sandwich", "sausage", "seaweed", "skewer", "spitroast", "spring_onion", "strawberry", "sushi", "sweet_potato", "sweets", "taiyaki", "takoyaki", "tamagoyaki", "tempurakanbea", "toast", "tomato", "vegetable", "wagashi", "wagashi", "watermelon", "jam", "popcorn", ],
|
43 |
+
#飲み物/飲品
|
44 |
+
"Beverage" : ["alcohol", "beer", "coffee", "cola", "drink", "juice", "juice_box", "milk", "sake", "soda", "tea", "_tea", "whiskey", "wine", "cocktail", ],
|
45 |
+
#音楽/音樂
|
46 |
+
"Music" : ["band", "baton_(conducting)", "beamed", "cello", "concert", "drum", "drumsticks", "eighth_note", "flute", "guitar", "harp", "horn", "(instrument)", "idol", "instrument", "k-pop", "lyre", "(music)", "megaphone", "microphone", "music", "musical_note", "phonograph", "piano", "plectrum", "quarter_note", "recorder", "sixteenth_note", "sound_effects", "trumpet", "utaite", "violin", "whistle", ],
|
47 |
+
#武器・装備/武器・裝備
|
48 |
+
"Weapons & Equipment" : ["ammunition", "arrow_(projectile)", "axe", "bandolier", "baseball_bat", "beretta_92", "bolt_action", "bomb", "bullet", "bullpup", "cannon", "chainsaw", "crossbow", "dagger", "energy_sword", "explosive", "fighter_jet", "gohei", "grenade", "gun", "hammer", "handgun", "holstered", "jet", "katana", "knife", "kunai", "lance", "mallet", "nata_(tool)", "polearm", "quiver", "rapier", "revolver", "rifle", "rocket_launcher", "scabbard", "scope", "scythe", "sheath", "sheathed", "shield", "shotgun", "shuriken", "spear", "staff", "suppressor", "sword", "tank", "tantou", "torpedo", "trident", "(weapon)", "wand", "weapon", "whip", "yumi_(bow)", "h&k_hk416", "rocket_launcher", "heckler_&_koch", "_weapon", ],
|
49 |
+
#乗り物/交通器具
|
50 |
+
"Vehicles" : ["aircraft", "airplane", "bicycle", "boat", "car", "caterpillar_tracks", "flight_deck", "helicopter", "motor_vehicle", "motorcycle", "ship", "spacecraft", "spoiler_(automobile)", "train", "truck", "watercraft", "wheel", "wheelbarrow", "wheelchair", "inflatable_raft", ],
|
51 |
+
#建物/建物
|
52 |
+
"Buildings" : ["apartment", "aquarium", "architecture", "balcony", "building", "cafe", "castle", "church", "gym", "hallway", "hospital", "house", "library", "(place)", "porch", "restaurant", "restroom", "rooftop", "shop", "skyscraper", "stadium", "stage", "temple", "toilet", "tower", "train_station", "veranda", ],
|
53 |
+
#室内/室內
|
54 |
+
"Indoor" : ["bath", "bathroom", "bathtub", "bed", "bed_sheet", "bedroom", "blanket", "bookshelf", "carpet", "ceiling", "chair", "chalkboard", "classroom", "counter", "cupboard", "curtains", "cushion", "dakimakura", "desk", "door", "doorway", "drawer", "_floor", "floor", "futon", "indoors", "interior", "kitchen", "kotatsu", "locker", "mirror", "pillow", "room", "rug", "school_desk", "shelf", "shouji", "sink", "sliding_doors", "stairs", "stool", "storeroom", "table", "tatami", "throne", "window", "windowsill", "bathhouse", "chest_of_drawers", ],
|
55 |
+
#屋外/室外
|
56 |
+
"Outdoor" : ["alley", "arch", "beach", "bridge", "bus_stop", "bush", "cave", "(city)", "city", "cliff", "crescent", "crosswalk", "day", "desert", "fence", "ferris_wheel", "field", "forest", "grass", "graveyard", "hill", "lake", "lamppost", "moon", "mountain", "night", "ocean", "onsen", "outdoors", "path", "pool", "poolside", "railing", "railroad", "river", "road", "rock", "sand", "shore", "sky", "smokestack", "snow", "snowball", "snowman", "street", "sun", "sunlight", "sunset", "tent", "torii", "town", "tree", "turret", "utility_pole", "valley", "village", "waterfall", ],
|
57 |
+
#物品/物品
|
58 |
+
"Objects" : ["anchor", "android", "armchair", "(bottle)", "backpack", "bag", "ball", "balloon", "bandages", "bandaid", "bandaids", "banknote", "banner", "barcode", "barrel", "baseball", "basket", "basketball", "beachball", "bell", "bench", "binoculars", "board_game", "bone", "book", "bottle", "bowl", "box", "box_art", "briefcase", "broom", "bucket", "(chess)", "(computer)", "(computing)", "(container)", "cage", "calligraphy_brush", "camera", "can", "candle", "candlestand", "cane", "card", "cartridge", "cellphone", "chain", "chandelier", "chess", "chess_piece", "choko_(cup)", "chopsticks", "cigar", "clipboard", "clock", "clothesline", "coin", "comb", "computer", "condom", "controller", "cosmetics", "couch", "cowbell", "crazy_straw", "cup", "cutting_board", "dice", "digital_media_player", "doll", "drawing_tablet", "drinking_straw", "easel", "electric_fan", "emblem", "envelope", "eraser", "feathers", "figure", "fire", "fishing_rod", "flag", "flask", "folding_fan", "fork", "frying_pan", "(gemstone)", "game_console", "gears", "gemstone", "gift", "glass", "glowstick", "gold", "handbag", "handcuffs", "handheld_game_console", "hose", "id_card", "innertube", "iphone", "jack-o'-lantern", "jar", "joystick", "key", "keychain", "kiseru", "ladder", "ladle", "lamp", "lantern", "laptop", "letter", "letterboxed", "lifebuoy", "lipstick", "liquid", "lock", "lotion", "_machine", "map", "marker", "model_kit", "money", "monitor", "mop", "mug", "needle", "newspaper", "nintendo", "nintendo_switch", "notebook", "(object)", "ofuda", "orb", "origami", "(playing_card)", "pack", "paddle", "paintbrush", "pan", "paper", "parasol", "patch", "pc", "pen", "pencil", "pencil", "pendant_watch", "phone", "pill", "pinwheel", "plate", "playstation", "pocket_watch", "pointer", "poke_ball", "pole", "quill", "racket", "randoseru", "remote_control", "ring", "rope", "sack", "saddle", "sakazuki", "satchel", "saucer", "scissors", "scroll", "seashell", "seatbelt", "shell", "shide", "shopping_cart", "shovel", "shower_head", "silk", "sketchbook", "smartphone", "soap", "sparkler", "spatula", "speaker", "spoon", "statue", "stethoscope", "stick", "sticker", "stopwatch", "string", "stuffed_", "stylus", "suction_cups", "suitcase", "surfboard", "syringe", "talisman", "tanzaku", "tape", "teacup", "teapot", "teddy_bear", "television", "test_tube", "tiles", "tokkuri", "tombstone", "torch", "towel", "toy", "traffic_cone", "tray", "treasure_chest", "uchiwa", "umbrella", "vase", "vial", "video_game", "viewfinder", "volleyball", "wallet", "watch", "watch", "whisk", "whiteboard", "wreath", "wrench", "wristwatch", "yunomi", "ace_of_hearts", "inkwell", "compass", "ipod", "sunscreen", "rocket", "cobblestone", ],
|
59 |
+
#キャラクター設定/角色設定
|
60 |
+
"Character Design" : ["+boys", "+girls", "1other", "39", "_boys", "_challenge", "_connection", "_female", "_fur", "_girls", "_interface", "_male", "_man", "_person", "abyssal_ship", "age_difference", "aged_down", "aged_up", "albino", "alien", "alternate_muscle_size", "ambiguous_gender", "amputee", "androgynous", "angel", "animalization", "ass-to-ass", "assault_visor", "au_ra", "baby", "bartender", "beak", "bishounen", "borrowed_character", "boxers", "boy", "breast_envy", "breathing_fire", "bride", "broken", "brother_and_sister", "brothers", "camouflage", "cheating_(relationship)", "cheerleader", "chibi", "child", "clone", "command_spell", "comparison", "contemporary", "corpse", "corruption", "cosplay", "couple", "creature_and_personification", "crossdressing", "crossover", "cyberpunk", "cyborg", "cyclops", "damaged", "dancer", "danmaku", "darkness", "death", "defeat", "demon", "disembodied_", "draph", "drone", "duel", "dwarf", "egyptian", "electricity", "elezen", "elf", "enmaided", "erune", "everyone", "evolutionary_line", "expressions", "fairy", "family", "fangs", "fantasy", "fashion", "fat", "father_and_daughter", "father_and_son", "fewer_digits", "fins", "flashback", "fluffy", "fumo_(doll)", "furry", "fusion", "fuuin_no_tsue", "gameplay_mechanics", "genderswap", "ghost", "giant", "giantess", "gibson_les_paul", "girl", "goblin", "groom", "guro", "gyaru", "habit", "harem", "harpy", "harvin", "heads_together", "health_bar", "height_difference", "hitodama", "horror_(theme)", "humanization", "husband_and_wife", "hydrokinesis", "hypnosis", "hyur", "idol", "insignia", "instant_loss", "interracial", "interspecies", "japari_bun", "jeweled_branch_of_hourai", "jiangshi", "jirai_kei", "joints", "karakasa_obake", "keyhole", "kitsune", "knight", "kodona", "kogal", "kyuubi", "lamia", "left-handed", "loli", "lolita", "look-alike", "machinery", "magic", "male_focus", "manly", "matching_outfits", "mature_female", "mecha", "mermaid", "meta", "miko", "milestone_celebration", "military", "mind_control", "miniboy", "minigirl", "miqo'te", "monster", "monsterification", "mother_and_daughter", "mother_and_son", "multiple_others", "muscular", "nanodesu_(phrase)", "narrow_waist", "nekomata", "netorare", "ninja", "no_humans", "nontraditional", "nun", "nurse", "object_namesake", "obliques", "office_lady", "old", "on_body", "onee-shota", "oni", "orc", "others", "otoko_no_ko", "oversized_object", "paint_splatter", "pantyshot", "pawpads", "persona", "personality", "personification", "pet_play", "petite", "pirate", "playboy_bunny", "player_2", "plugsuit", "plump", "poi", "pokemon", "police", "policewoman", "pom_pom_(cheerleading)", "princess", "prosthesis", "pun", "puppet", "race_queen", "radio_antenna", "real_life_insert", "redesign", "reverse_trap", "rigging", "robot", "rod_of_remorse", "sailor", "salaryman", "samurai", "sangvis_ferri", "scales", "scene_reference", "school", "sheikah", "shota", "shrine", "siblings", "side-by-side", "sidesaddle", "sisters", "size_difference", "skeleton", "skinny", "slave", "slime_(substance)", "soldier", "spiked_shell", "spokencharacter", "steampunk", "streetwear", "striker_unit", "strongman", "submerged", "suggestive", "super_saiyan", "superhero", "surreal", "take_your_pick", "tall", "talons", "taur", "teacher", "team_rocket", "three-dimensional_maneuver_gear", "time_paradox", "tomboy", "traditional_youkai", "transformation", "trick_or_treat", "tusks", "twins", "ufo", "under_covers", "v-fin", "v-fin", "vampire", "virtual_youtuber", "waitress", "watching_television", "wedding", "what", "when_you_see_it", "wife_and_wife", "wing", "wings", "witch", "world_war_ii", "yandere", "year_of", "yes", "yin_yang", "yordle", "you're_doing_it_wrong", "you_gonna_get_raped", "yukkuri_shiteitte_ne", "yuri", "zombie", "(alice_in_wonderland)", "(arknights)", "(blue_archive)", "(cosplay)", "(creature)", "(emblem)", "(evangelion)", "(fate)", "(fate/stay_night)", "(ff11)", "(fire_emblem)", "(genshin_impact)", "(grimm)", "(houseki_no_kuni)", "(hyouka)", "(idolmaster)", "(jojo)", "(kancolle)", "(kantai_collection)", "(kill_la_kill)", "(league_of_legends)", "(legends)", "(lyomsnpmp)", "(machimazo)", "(madoka_magica)", "(mecha)", "(meme)", "(nier:automata)", "(organ)", "(overwatch)", "(pokemon)", "(project_moon)", "(project_sekai)", "(sao)", "(senran_kagura)", "(splatoon)", "(touhou)", "(tsukumo_sana)", "(youkai_watch)", "(yu-gi-oh!_gx)", "(zelda)", "sextuplets", "imperial_japanese_army", "extra_faces", "_miku", ],
|
61 |
+
#構図/構圖
|
62 |
+
"Composition" : ["abstract", "anime_coloring", "animification", "back-to-back", "bad_anatomy", "blurry", "border", "bound", "cameo", "cheek-to-cheek", "chromatic_aberration", "close-up", "collage", "color_guide", "colorful", "comic", "contrapposto", "cover", "cowboy_shot", "crosshatching", "depth_of_field", "dominatrix", "dutch_angle", "_focus", "face-to-face", "fake_screenshot", "film_grain", "fisheye", "flat_color", "foreshortening", "from_above", "from_behind", "from_below", "from_side", "full_body", "glitch", "greyscale", "halftone", "head_only", "heads-up_display", "high_contrast", "horizon", "_inset", "inset", "jaggy_lines", "1koma", "2koma", "3koma", "4koma", "5koma", "leaning", "leaning_forward", "leaning_to_the_side", "left-to-right_manga", "lens_flare", "limited_palette", "lineart", "lineup", "lower_body", "(medium)", "marker_(medium)", "meme", "mixed_media", "monochrome", "multiple_views", "muted_color", "oekaki", "on_side", "out_of_frame", "outline", "painting", "parody", "partially_colored", "partially_underwater_shot", "perspective", "photorealistic", "picture_frame", "pillarboxed", "portrait", "poster_(object)", "product_placement", "profile", "realistic", "recording", "retro_artstyle", "(style)", "_style", "sandwiched", "science_fiction", "sepia", "shikishi", "side-by-side", "sideways", "sideways_glance", "silhouette", "sketch", "spot_color", "still_life", "straight-on", "symmetry", "(texture)", "tachi-e", "taking_picture", "tegaki", "too_many", "traditional_media", "turnaround", "underwater", "upper_body", "upside-down", "upskirt", "variations", "wide_shot", "_design", "symbolism", "rounded_corners", "surrounded", ],
|
63 |
+
#季節/季節
|
64 |
+
"Season" : ["akeome", "anniversary", "autumn", "birthday", "christmas", "_day", "festival", "halloween", "kotoyoro", "nengajou", "new_year", "spring_(season)", "summer", "tanabata", "valentine", "winter", ],
|
65 |
+
#背景/背景
|
66 |
+
"Background" : ["_background", "backlighting", "bloom", "bokeh", "brick_wall", "bubble", "cable", "caustics", "cityscape", "cloud", "confetti", "constellation", "contrail", "crowd", "crystal", "dark", "debris", "dusk", "dust", "egasumi", "embers", "emphasis_lines", "energy", "evening", "explosion", "fireworks", "fog", "footprints", "glint", "graffiti", "ice", "industrial_pipe", "landscape", "light", "light_particles", "light_rays", "lightning", "lights", "moonlight", "motion_blur", "motion_lines", "mountainous_horizon", "nature", "(planet)", "pagoda", "people", "pillar", "planet", "power_lines", "puddle", "rain", "rainbow", "reflection", "ripples", "rubble", "ruins", "scenery", "shade", "shooting_star", "sidelighting", "smoke", "snowflakes", "snowing", "space", "sparkle", "sparks", "speed_lines", "spider_web", "spotlight", "star_(sky)", "stone_wall", "sunbeam", "sunburst", "sunrise", "_theme", "tile_wall", "twilight", "wall_clock", "wall_of_text", "water", "waves", "wind", "wire", "wooden_wall", "lighthouse", ],
|
67 |
+
# パターン/圖案
|
68 |
+
"Patterns" : ["arrow", "bass_clef", "blank_censor", "circle", "cube", "heart", "hexagon", "hexagram", "light_censor", "(pattern)", "pattern", "pentagram", "roman_numeral", "(shape)", "(symbol)", "shape", "sign", "symbol", "tally", "treble_clef", "triangle", "tube", "yagasuri", ],
|
69 |
+
#検閲/審查
|
70 |
+
"Censorship" : ["blur_censor", "_censor", "_censoring", "censored", "character_censor", "convenient", "hair_censor", "heart_censor", "identity_censor", "maebari", "novelty_censor", "soap_censor", "steam_censor", "tail_censor", "uncensored", ],
|
71 |
+
#その他/其他
|
72 |
+
"Others" : ["2007", "2008", "2009", "2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017", "2018", "2019", "2020", "2021", "2022", "2023", "2024", "artist", "artist_name", "artistic_error", "asian", "(company)", "character_name", "content_rating", "copyright", "cover_page", "dated", "english_text", "japan", "layer", "logo", "name", "numbered", "page_number", "pixiv_id", "ranguage", "reference_sheet", "signature", "speech_bubble", "subtitled", "text", "thank_you", "typo", "username", "wallpaper", "watermark", "web_address", "screwdriver", "translated", ],
|
73 |
+
"Quality Tags" : ["masterpiece", "_quality", "highres", "absurdres", "ultra-detailed", "lowres", ],
|
74 |
+
}
|
75 |
+
|
76 |
+
reversed_categories = {value: key for key, values in categories.items() for value in values}
|
77 |
+
|
78 |
+
# Precompute keyword lengths
|
79 |
+
keyword_lengths = {keyword: len(keyword) for keyword in reversed_categories}
|
80 |
+
|
81 |
+
# Trie for efficient keyword matching
|
82 |
+
class TrieNode:
|
83 |
+
def __init__(self):
|
84 |
+
self.children = {}
|
85 |
+
self.category = None
|
86 |
+
|
87 |
+
def build_trie(keywords):
|
88 |
+
root = TrieNode()
|
89 |
+
for keyword, category in reversed_categories.items():
|
90 |
+
node = root
|
91 |
+
for char in keyword:
|
92 |
+
if char not in node.children:
|
93 |
+
node.children[char] = TrieNode()
|
94 |
+
node = node.children[char]
|
95 |
+
node.category = category
|
96 |
+
return root
|
97 |
+
|
98 |
+
trie_root = build_trie(reversed_categories)
|
99 |
+
|
100 |
+
def find_category(trie_root, tag):
|
101 |
+
node = trie_root
|
102 |
+
for char in tag:
|
103 |
+
if char in node.children:
|
104 |
+
node = node.children[char]
|
105 |
+
if node.category:
|
106 |
+
return node.category
|
107 |
+
else:
|
108 |
+
break
|
109 |
+
return None
|
110 |
+
|
111 |
+
def classify_tags(tags: list[str], local_test: bool = False):
|
112 |
+
# Dictionary for automatic classification
|
113 |
+
classified_tags: defaultdict[str, list] = defaultdict(list)
|
114 |
+
fuzzy_match_tags: defaultdict[str, list] = defaultdict(list)
|
115 |
+
unclassified_tags: list[str] = []
|
116 |
+
|
117 |
+
# Logic for automatic grouping
|
118 |
+
for tag in tags:
|
119 |
+
classified = False
|
120 |
+
tag_new = tag.replace(" ", "_").replace("-", "_").replace("\\(", "(").replace("\\)", ")") # Replace spaces in source tags with underscores
|
121 |
+
|
122 |
+
# Exact match using the trie
|
123 |
+
category = find_category(trie_root, tag_new)
|
124 |
+
if category:
|
125 |
+
classified = True
|
126 |
+
else:
|
127 |
+
# Fuzzy match
|
128 |
+
tag_parts = tag_new.split("_")
|
129 |
+
for keyword, keyword_length in keyword_lengths.items():
|
130 |
+
if keyword in tag_new and keyword_length > 3: # Adjust the threshold if needed
|
131 |
+
classified = True
|
132 |
+
category = reversed_categories[keyword]
|
133 |
+
break
|
134 |
+
|
135 |
+
if classified and tag not in classified_tags[category]: # Avoid duplicates
|
136 |
+
classified_tags[category].append(tag)
|
137 |
+
elif not classified and tag not in unclassified_tags:
|
138 |
+
unclassified_tags.append(tag) # Unclassified tags
|
139 |
+
|
140 |
+
if local_test:
|
141 |
+
# Output the grouping result
|
142 |
+
for category, tags in classified_tags.items():
|
143 |
+
print(f"{category}:")
|
144 |
+
print(", ".join(tags))
|
145 |
+
print()
|
146 |
+
|
147 |
+
print()
|
148 |
+
print("Fuzzy match:")
|
149 |
+
for category, tags in fuzzy_match_tags.items():
|
150 |
+
print(f"{category}:")
|
151 |
+
print(", ".join(tags))
|
152 |
+
print()
|
153 |
+
print()
|
154 |
+
|
155 |
+
if len(unclassified_tags) > 0:
|
156 |
+
print(f"\nUnclassified tags: {len(unclassified_tags)}")
|
157 |
+
print(f"{unclassified_tags[:200]}") # Display some unclassified tags
|
158 |
+
|
159 |
+
return classified_tags, unclassified_tags
|
160 |
+
|
161 |
+
# Code for "Tag Categorizer" tab
|
162 |
+
def process_tags(input_tags: str):
|
163 |
+
# Split tags using regex to handle both commas and question marks
|
164 |
+
tags = []
|
165 |
+
for tag in re.split(r'\?|,|\n', input_tags):
|
166 |
+
tag = tag.strip()
|
167 |
+
if tag:
|
168 |
+
# Remove numbers at the end of tags
|
169 |
+
tag = re.sub(r'\b\d+\b', '', tag).strip()
|
170 |
+
|
171 |
+
# Replace underscores with spaces
|
172 |
+
tag = tag.replace('_', ' ')
|
173 |
+
|
174 |
+
# Escape parentheses (handle both escaped and unescaped)
|
175 |
+
if '(' in tag or ')' in tag:
|
176 |
+
# First, replace existing backslashes to handle properly
|
177 |
+
tag = tag.replace('\\', '')
|
178 |
+
# Replace parentheses with escaped versions
|
179 |
+
tag = tag.replace('(', r'\(').replace(')', r'\)')
|
180 |
+
|
181 |
+
if tag: # Only add if tag is not empty after processing
|
182 |
+
tags.append(tag)
|
183 |
+
|
184 |
+
# Classify the cleaned tags
|
185 |
+
classified_tags, unclassified_tags = classify_tags(tags)
|
186 |
+
|
187 |
+
# Create the outputs
|
188 |
+
categorized_string = ', '.join([tag for category in classified_tags.values() for tag in category])
|
189 |
+
categorized_json = {category: tags for category, tags in classified_tags.items()}
|
190 |
+
|
191 |
+
return categorized_string, categorized_json, "" # Initialize enhanced_prompt as empty
|