File size: 31,180 Bytes
415a9c8
5818eb3
 
6350bdc
415a9c8
6350bdc
 
415a9c8
 
6350bdc
5818eb3
 
36e1bda
cdb99b8
6350bdc
 
415a9c8
 
5818eb3
06900b2
5818eb3
 
 
 
06900b2
415a9c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6350bdc
 
 
 
5818eb3
415a9c8
6350bdc
 
 
 
 
 
 
 
 
 
 
415a9c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6350bdc
415a9c8
 
 
 
 
 
 
 
 
 
 
 
6350bdc
 
 
 
 
 
 
 
 
415a9c8
6350bdc
415a9c8
 
 
 
 
 
 
 
 
 
36e1bda
415a9c8
 
 
 
35b60c7
 
 
415a9c8
35b60c7
 
415a9c8
35b60c7
36e1bda
35b60c7
 
415a9c8
35b60c7
 
 
 
 
 
 
 
 
 
 
6350bdc
35b60c7
 
 
 
 
36e1bda
 
 
35b60c7
36e1bda
 
35b60c7
 
415a9c8
35b60c7
 
 
 
 
 
 
 
 
 
 
 
415a9c8
35b60c7
 
 
 
 
415a9c8
35b60c7
415a9c8
35b60c7
 
 
 
415a9c8
35b60c7
415a9c8
35b60c7
 
 
415a9c8
35b60c7
 
415a9c8
35b60c7
 
 
415a9c8
35b60c7
 
415a9c8
35b60c7
 
415a9c8
35b60c7
 
 
 
415a9c8
35b60c7
 
 
415a9c8
35b60c7
 
 
 
 
 
cdb99b8
35b60c7
cdb99b8
35b60c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6350bdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415a9c8
35b60c7
 
 
36e1bda
 
 
35b60c7
 
 
36e1bda
35b60c7
 
36e1bda
 
35b60c7
 
 
 
 
 
 
 
 
 
 
 
cdb99b8
 
35b60c7
 
 
 
 
 
6350bdc
35b60c7
 
6350bdc
35b60c7
 
 
 
 
6350bdc
36e1bda
 
 
35b60c7
 
 
 
415a9c8
35b60c7
415a9c8
 
 
35b60c7
 
 
 
 
 
 
cdb99b8
 
35b60c7
415a9c8
 
cdb99b8
6350bdc
 
 
 
 
 
 
 
 
 
 
 
 
415a9c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6350bdc
 
 
 
415a9c8
 
 
6350bdc
 
 
 
 
 
 
 
415a9c8
0875f49
415a9c8
 
 
 
 
 
 
 
 
 
 
 
 
c0c5604
415a9c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36e1bda
 
415a9c8
36e1bda
 
415a9c8
 
 
 
 
 
 
 
 
 
 
 
 
 
36e1bda
415a9c8
 
 
 
 
 
 
cdb99b8
 
 
 
 
 
 
 
 
 
 
415a9c8
 
 
 
35b60c7
415a9c8
 
 
 
 
cdb99b8
 
415a9c8
cdb99b8
415a9c8
 
 
 
 
 
 
cdb99b8
415a9c8
 
cdb99b8
 
415a9c8
 
 
 
 
 
 
 
 
 
36e1bda
415a9c8
 
 
 
35b60c7
 
415a9c8
 
 
 
 
 
 
 
 
 
 
cdb99b8
5818eb3
 
 
 
 
 
 
cdb99b8
 
 
 
 
 
415a9c8
 
 
 
 
 
 
 
 
 
35b60c7
415a9c8
 
 
 
 
 
 
 
 
 
 
 
 
35b60c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
import os
import io,copy,requests,spaces,gradio as gr,numpy as np
from transformers import AutoProcessor,AutoModelForCausalLM
from PIL import Image,ImageDraw,ImageFont
from unittest.mock import patch
import argparse,huggingface_hub,onnxruntime as rt,pandas as pd,traceback,tempfile,zipfile,re,ast,time
from datetime import datetime,timezone
from collections import defaultdict
from apscheduler.schedulers.background import BackgroundScheduler
import json
from modules.classifyTags import classify_tags,process_tags
from modules.florence2 import process_image,single_task_list,update_task_dropdown
from modules.reorganizer_model import reorganizer_list,reorganizer_class
from modules.tag_enhancer import prompt_enhancer
os.environ['PYTORCH_ENABLE_MPS_FALLBACK']='1'

TITLE = "Multi-Tagger"
DESCRIPTION = """
Multi-Tagger is a versatile application that combines the Waifu Diffusion and Florence 2 models for advanced image analysis and captioning. Perfect for AI artists and enthusiasts, it offers a range of features:

- Batch processing for multiple images
- Multi-category tagging with structured tag display.
- CUDA or CPU support.
- Image tagging, various captioning tasks which includes: Caption, Detailed Caption, Object Detection with visual outputs and much more.

Example image by [me.](https://huggingface.co/Werli)
"""

# Dataset v3 series of models:
SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3"
VIT_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-large-tagger-v3"
EVA02_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
# Dataset v2 series of models:
MOAT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
SWIN_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
# IdolSankaku series of models:
EVA02_LARGE_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-eva02-large-tagger-v1"
SWINV2_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-swinv2-tagger-v1"
# Files to download from the repos
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"

kaomojis=['0_0','(o)_(o)','+_+','+_-','._.','<o>_<o>','<|>_<|>','=_=','>_<','3_3','6_9','>_o','@_@','^_^','o_o','u_u','x_x','|_|','||_||']
def parse_args()->argparse.Namespace:parser=argparse.ArgumentParser();parser.add_argument('--score-slider-step',type=float,default=.05);parser.add_argument('--score-general-threshold',type=float,default=.35);parser.add_argument('--score-character-threshold',type=float,default=.85);parser.add_argument('--share',action='store_true');return parser.parse_args()
def load_labels(dataframe)->list[str]:name_series=dataframe['name'];name_series=name_series.map(lambda x:x.replace('_',' ')if x not in kaomojis else x);tag_names=name_series.tolist();rating_indexes=list(np.where(dataframe['category']==9)[0]);general_indexes=list(np.where(dataframe['category']==0)[0]);character_indexes=list(np.where(dataframe['category']==4)[0]);return tag_names,rating_indexes,general_indexes,character_indexes
def mcut_threshold(probs):sorted_probs=probs[probs.argsort()[::-1]];difs=sorted_probs[:-1]-sorted_probs[1:];t=difs.argmax();thresh=(sorted_probs[t]+sorted_probs[t+1])/2;return thresh

class Timer:
	def __init__(self):self.start_time=time.perf_counter();self.checkpoints=[('Start',self.start_time)]
	def checkpoint(self,label='Checkpoint'):now=time.perf_counter();self.checkpoints.append((label,now))
	def report(self,is_clear_checkpoints=True):
		max_label_length=max(len(label)for(label,_)in self.checkpoints);prev_time=self.checkpoints[0][1]
		for(label,curr_time)in self.checkpoints[1:]:elapsed=curr_time-prev_time;print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds");prev_time=curr_time
		if is_clear_checkpoints:self.checkpoints.clear();self.checkpoint()
	def report_all(self):
		print('\n> Execution Time Report:');max_label_length=max(len(label)for(label,_)in self.checkpoints)if len(self.checkpoints)>0 else 0;prev_time=self.start_time
		for(label,curr_time)in self.checkpoints[1:]:elapsed=curr_time-prev_time;print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds");prev_time=curr_time
		total_time=self.checkpoints[-1][1]-self.start_time;print(f"{'Total Execution Time'.ljust(max_label_length)}: {total_time:.3f} seconds\n");self.checkpoints.clear()
	def restart(self):self.start_time=time.perf_counter();self.checkpoints=[('Start',self.start_time)]
class Predictor:
    def __init__(self):
        self.model_target_size = None
        self.last_loaded_repo = None
    def download_model(self, model_repo):
        csv_path = huggingface_hub.hf_hub_download(
            model_repo,
            LABEL_FILENAME,
        )
        model_path = huggingface_hub.hf_hub_download(
            model_repo,
            MODEL_FILENAME,
        )
        return csv_path, model_path
    def load_model(self, model_repo):
        if model_repo == self.last_loaded_repo:
            return

        csv_path, model_path = self.download_model(model_repo)

        tags_df = pd.read_csv(csv_path)
        sep_tags = load_labels(tags_df)

        self.tag_names = sep_tags[0]
        self.rating_indexes = sep_tags[1]
        self.general_indexes = sep_tags[2]
        self.character_indexes = sep_tags[3]

        model = rt.InferenceSession(model_path)
        _, height, width, _ = model.get_inputs()[0].shape
        self.model_target_size = height

        self.last_loaded_repo = model_repo
        self.model = model
    def prepare_image(self, path):
        image = Image.open(path)
        image = image.convert("RGBA")
        target_size = self.model_target_size

        canvas = Image.new("RGBA", image.size, (255, 255, 255))
        canvas.alpha_composite(image)
        image = canvas.convert("RGB")

        # Pad image to square
        image_shape = image.size
        max_dim = max(image_shape)
        pad_left = (max_dim - image_shape[0]) // 2
        pad_top = (max_dim - image_shape[1]) // 2

        padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
        padded_image.paste(image, (pad_left, pad_top))

        # Resize
        if max_dim != target_size:
            padded_image = padded_image.resize(
                (target_size, target_size),
                Image.BICUBIC,
            )
        # Convert to numpy array
        image_array = np.asarray(padded_image, dtype=np.float32)
        # Convert PIL-native RGB to BGR
        image_array = image_array[:, :, ::-1]
        return np.expand_dims(image_array, axis=0)

    def create_file(self, content: str, directory: str, fileName: str) -> str:
        # Write the content to a file
        file_path = os.path.join(directory, fileName)
        if fileName.endswith('.json'):
            with open(file_path, 'w', encoding="utf-8") as file:
                file.write(content)
        else:
            with open(file_path, 'w+', encoding="utf-8") as file:
                file.write(content)

        return file_path

    def predict(
        self,
        gallery,
        model_repo,
        general_thresh,
        general_mcut_enabled,
        character_thresh,
        character_mcut_enabled,
        characters_merge_enabled,
        reorganizer_model_repo,
        additional_tags_prepend,
        additional_tags_append,
        tag_results,
        progress=gr.Progress()
        ):
            # Clear tag_results before starting a new prediction
            tag_results.clear()

            gallery_len = len(gallery)
            print(f"Predict load model: {model_repo}, gallery length: {gallery_len}")

            timer = Timer()  # Create a timer
            progressRatio = 0.5 if reorganizer_model_repo else 1
            progressTotal = gallery_len + 1
            current_progress = 0

            self.load_model(model_repo)
            current_progress += progressRatio/progressTotal;
            progress(current_progress, desc="Initialize wd model finished")
            timer.checkpoint(f"Initialize wd model")

            txt_infos = []
            output_dir = tempfile.mkdtemp()
            if not os.path.exists(output_dir):
                os.makedirs(output_dir)

            sorted_general_strings = ""
            # Create categorized output string
            categorized_output_strings = []
            rating = None
            character_res = None
            general_res = None

            if reorganizer_model_repo:
                print(f"Reorganizer load model {reorganizer_model_repo}")
                reorganizer = reorganizer_class(reorganizer_model_repo, loadModel=True)
                current_progress += progressRatio/progressTotal;
                progress(current_progress, desc="Initialize reoganizer model finished")
                timer.checkpoint(f"Initialize reoganizer model")
                
            timer.report()

            prepend_list = [tag.strip() for tag in additional_tags_prepend.split(",") if tag.strip()]
            append_list = [tag.strip() for tag in additional_tags_append.split(",") if tag.strip()]
            if prepend_list and append_list:
                append_list = [item for item in append_list if item not in prepend_list]
                
            # Dictionary to track counters for each filename
            name_counters = defaultdict(int)
            
            for idx, value in enumerate(gallery):
                try:
                    image_path = value[0]
                    image_name = os.path.splitext(os.path.basename(image_path))[0]

                    # Increment the counter for the current name
                    name_counters[image_name] += 1
                    
                    if name_counters[image_name] > 1:
                        image_name = f"{image_name}_{name_counters[image_name]:02d}"

                    image = self.prepare_image(image_path)

                    input_name = self.model.get_inputs()[0].name
                    label_name = self.model.get_outputs()[0].name
                    print(f"Gallery {idx:02d}: Starting run wd model...")
                    preds = self.model.run([label_name], {input_name: image})[0]

                    labels = list(zip(self.tag_names, preds[0].astype(float)))

                    # First 4 labels are actually ratings: pick one with argmax
                    ratings_names = [labels[i] for i in self.rating_indexes]
                    rating = dict(ratings_names)

                    # Then we have general tags: pick any where prediction confidence > threshold
                    general_names = [labels[i] for i in self.general_indexes]

                    if general_mcut_enabled:
                        general_probs = np.array([x[1] for x in general_names])
                        general_thresh = mcut_threshold(general_probs)

                    general_res = [x for x in general_names if x[1] > general_thresh]
                    general_res = dict(general_res)

                    # Everything else is characters: pick any where prediction confidence > threshold
                    character_names = [labels[i] for i in self.character_indexes]

                    if character_mcut_enabled:
                        character_probs = np.array([x[1] for x in character_names])
                        character_thresh = mcut_threshold(character_probs)
                        character_thresh = max(0.15, character_thresh)

                    character_res = [x for x in character_names if x[1] > character_thresh]
                    character_res = dict(character_res)
                    character_list = list(character_res.keys())

                    sorted_general_list = sorted(
                        general_res.items(),
                        key=lambda x: x[1],
                        reverse=True,
                    )
                    sorted_general_list = [x[0] for x in sorted_general_list]
                    # Remove values from character_list that already exist in sorted_general_list
                    character_list = [item for item in character_list if item not in sorted_general_list]
                    # Remove values from sorted_general_list that already exist in prepend_list or append_list
                    if prepend_list:
                        sorted_general_list = [item for item in sorted_general_list if item not in prepend_list]
                    if append_list:
                        sorted_general_list = [item for item in sorted_general_list if item not in append_list]

                    sorted_general_list = prepend_list + sorted_general_list + append_list

                    sorted_general_strings = ", ".join((character_list if characters_merge_enabled else []) + sorted_general_list).replace("(", "\(").replace(")", "\)")

                    classified_tags, unclassified_tags = classify_tags(sorted_general_list)
                    
                    # Create a single string of ALL categorized tags for the current image
                    categorized_output_string = ', '.join([', '.join(tags) for tags in classified_tags.values()])
                    categorized_output_strings.append(categorized_output_string)
                    # Collect all categorized output strings into a single string
                    final_categorized_output = ', '.join(categorized_output_strings)
                    
                    # Create a .txt file for "Output (string)" and "Categorized Output (string)"
                    txt_content = f"Output (string): {sorted_general_strings}\nCategorized Output (string): {final_categorized_output}"
                    txt_file = self.create_file(txt_content, output_dir, f"{image_name}_output.txt")
                    txt_infos.append({"path": txt_file, "name": f"{image_name}_output.txt"})

                    # Create a .json file for "Categorized (tags)"
                    json_content = json.dumps(classified_tags, indent=4)
                    json_file = self.create_file(json_content, output_dir, f"{image_name}_categorized_tags.json")
                    txt_infos.append({"path": json_file, "name": f"{image_name}_categorized_tags.json"})

                    # Save a copy of the uploaded image in PNG format
                    image_path = value[0]
                    image = Image.open(image_path)
                    image.save(os.path.join(output_dir, f"{image_name}.png"), format="PNG")
                    txt_infos.append({"path": os.path.join(output_dir, f"{image_name}.png"), "name": f"{image_name}.png"})
                    
                    current_progress += progressRatio/progressTotal;
                    progress(current_progress, desc=f"image{idx:02d}, predict finished")
                    timer.checkpoint(f"image{idx:02d}, predict finished")
                    
                    if reorganizer_model_repo:
                        print(f"Starting reorganizer...")
                        reorganize_strings = reorganizer.reorganize(sorted_general_strings)
                        reorganize_strings = re.sub(r" *Title: *", "", reorganize_strings)
                        reorganize_strings = re.sub(r"\n+", ",", reorganize_strings)
                        reorganize_strings = re.sub(r",,+", ",", reorganize_strings)
                        sorted_general_strings += ",\n\n" + reorganize_strings

                        current_progress += progressRatio/progressTotal;
                        progress(current_progress, desc=f"image{idx:02d}, reorganizer finished")
                        timer.checkpoint(f"image{idx:02d}, reorganizer finished")

                    txt_file = self.create_file(sorted_general_strings, output_dir, image_name + ".txt")
                    txt_infos.append({"path":txt_file, "name": image_name + ".txt"})
                    
                    # Store the result in tag_results using image_path as the key
                    tag_results[image_path] = { 
                        "strings": sorted_general_strings, 
                        "strings2": categorized_output_string,  # Store the categorized output string here
                        "classified_tags": classified_tags, 
                        "rating": rating, 
                        "character_res": character_res, 
                        "general_res": general_res, 
                        "unclassified_tags": unclassified_tags,
                        "enhanced_tags": ""  # Initialize as empty string
                    }

                    timer.report()
                except Exception as e:
                    print(traceback.format_exc())
                    print("Error predict: " + str(e))
            # Zip creation logic:
            download = []
            if txt_infos is not None and len(txt_infos) > 0:
                downloadZipPath = os.path.join(output_dir, "Multi-tagger-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip")
                with zipfile.ZipFile(downloadZipPath, 'w', zipfile.ZIP_DEFLATED) as taggers_zip:
                    for info in txt_infos:
                        # Get file name from lookup
                        taggers_zip.write(info["path"], arcname=info["name"])
                download.append(downloadZipPath)
            # End zip creation logic
            if reorganizer_model_repo:
                reorganizer.release_vram()
                del reorganizer
                 
            progress(1, desc=f"Predict completed")
            timer.report_all()  # Print all recorded times
            print("Predict is complete.")
            
            return download, sorted_general_strings, final_categorized_output, classified_tags, rating, character_res, general_res, unclassified_tags, tag_results
def get_selection_from_gallery(gallery: list, tag_results: dict, selected_state: gr.SelectData):
    if not selected_state:
        return selected_state
    tag_result = { 
        "strings": "", 
        "strings2": "", 
        "classified_tags": "{}", 
        "rating": "", 
        "character_res": "", 
        "general_res": "", 
        "unclassified_tags": "{}", 
        "enhanced_tags": "" 
    }
    if selected_state.value["image"]["path"] in tag_results:
        tag_result = tag_results[selected_state.value["image"]["path"]]
    return (selected_state.value["image"]["path"], selected_state.value["caption"]), tag_result["strings"], tag_result["strings2"], tag_result["classified_tags"], tag_result["rating"], tag_result["character_res"], tag_result["general_res"], tag_result["unclassified_tags"], tag_result["enhanced_tags"]
def append_gallery(gallery:list,image:str):
	if gallery is None:gallery=[]
	if not image:return gallery,None
	gallery.append(image);return gallery,None
def extend_gallery(gallery:list,images):
	if gallery is None:gallery=[]
	if not images:return gallery
	gallery.extend(images);return gallery
def remove_image_from_gallery(gallery:list,selected_image:str):
	if not gallery or not selected_image:return gallery
	selected_image=ast.literal_eval(selected_image)
	if selected_image in gallery:gallery.remove(selected_image)
	return gallery
args = parse_args()
predictor = Predictor()
dropdown_list = [
    EVA02_LARGE_MODEL_DSV3_REPO,
    SWINV2_MODEL_DSV3_REPO,
    CONV_MODEL_DSV3_REPO,
    VIT_MODEL_DSV3_REPO,
    VIT_LARGE_MODEL_DSV3_REPO,
    # ---
    MOAT_MODEL_DSV2_REPO,
    SWIN_MODEL_DSV2_REPO,
    CONV_MODEL_DSV2_REPO,
    CONV2_MODEL_DSV2_REPO,
    VIT_MODEL_DSV2_REPO,
    # ---
    SWINV2_MODEL_IS_DSV1_REPO,
    EVA02_LARGE_MODEL_IS_DSV1_REPO,
]

def _restart_space():
	HF_TOKEN=os.getenv('HF_TOKEN')
	if not HF_TOKEN:raise ValueError('HF_TOKEN environment variable is not set.')
	huggingface_hub.HfApi().restart_space(repo_id='Werli/Multi-Tagger',token=HF_TOKEN,factory_reboot=False)
scheduler=BackgroundScheduler()
# Add a job to restart the space every 2 days (172800 seconds)
restart_space_job = scheduler.add_job(_restart_space, "interval", seconds=172800)
scheduler.start()
next_run_time_utc=restart_space_job.next_run_time.astimezone(timezone.utc)
NEXT_RESTART=f"Next Restart: {next_run_time_utc.strftime('%Y-%m-%d %H:%M:%S')} (UTC) - The space will restart every 2 days to ensure stability and performance. It uses a background scheduler to handle the restart process."

css = """
#output {height: 500px; overflow: auto; border: 1px solid #ccc;}
label.float.svelte-i3tvor {position: relative !important;}
.reduced-height.svelte-11chud3 {height: calc(80% - var(--size-10));}
"""

with gr.Blocks(title=TITLE, css=css, theme="Werli/Multi-Tagger", fill_width=True) as demo:
    gr.Markdown(value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>")
    gr.Markdown(value=DESCRIPTION)
    gr.Markdown(NEXT_RESTART)
    with gr.Tab(label="Waifu Diffusion"):
        with gr.Row():
            with gr.Column():
                submit = gr.Button(value="Submit", variant="primary", size="lg")
                with gr.Column(variant="panel"):
                    # Create an Image component for uploading images
                    image_input = gr.Image(label="Upload an Image or clicking paste from clipboard button", type="filepath", sources=["upload", "clipboard"], height=150)
                    with gr.Row():
                        upload_button = gr.UploadButton("Upload multiple images", file_types=["image"], file_count="multiple", size="sm")
                        remove_button = gr.Button("Remove Selected Image", size="sm")
                    gallery = gr.Gallery(columns=5, rows=5, show_share_button=False, interactive=True, height="500px", label="Grid of images")
                model_repo = gr.Dropdown(
                    dropdown_list,
                    value=EVA02_LARGE_MODEL_DSV3_REPO,
                    label="Model",
                )
                with gr.Row():
                    general_thresh = gr.Slider(
                        0,
                        1,
                        step=args.score_slider_step,
                        value=args.score_general_threshold,
                        label="General Tags Threshold",
                        scale=3,
                    )
                    general_mcut_enabled = gr.Checkbox(
                        value=False,
                        label="Use MCut threshold",
                        scale=1,
                    )
                with gr.Row():
                    character_thresh = gr.Slider(
                        0,
                        1,
                        step=args.score_slider_step,
                        value=args.score_character_threshold,
                        label="Character Tags Threshold",
                        scale=3,
                    )
                    character_mcut_enabled = gr.Checkbox(
                        value=False,
                        label="Use MCut threshold",
                        scale=1,
                    )
                with gr.Row():
                    characters_merge_enabled = gr.Checkbox(
                        value=True,
                        label="Merge characters into the string output",
                        scale=1,
                    )
                with gr.Row():
                    reorganizer_model_repo = gr.Dropdown(
                        [None] + reorganizer_list,
                        value=None,
                        label="Reorganizer Model",
                        info="Use a model to create a description for you",
                    )
                with gr.Row():
                    additional_tags_prepend = gr.Text(label="Prepend Additional tags (comma split)")
                    additional_tags_append  = gr.Text(label="Append Additional tags (comma split)")
                with gr.Row():
                    clear = gr.ClearButton(
                        components=[
                            gallery,
                            model_repo,
                            general_thresh,
                            general_mcut_enabled,
                            character_thresh,
                            character_mcut_enabled,
                            characters_merge_enabled,
                            reorganizer_model_repo,
                            additional_tags_prepend,
                            additional_tags_append,
                        ],
                        variant="secondary",
                        size="lg",
                    )
            with gr.Column(variant="panel"):
                download_file = gr.File(label="Download includes: All outputs* and image(s)")  # 0
                character_res = gr.Label(label="Output (characters)")  # 1
                sorted_general_strings = gr.Textbox(label="Output (string)*", show_label=True, show_copy_button=True)  # 2
                final_categorized_output = gr.Textbox(label="Categorized (string)* - If it's too long, select an image to display tags correctly.", show_label=True, show_copy_button=True)  # 3
                pe_generate_btn = gr.Button(value="ENHANCE TAGS", size="lg", variant="primary") # 4
                enhanced_tags = gr.Textbox(label="Enhanced Tags", show_label=True, show_copy_button=True)  # 5
                prompt_enhancer_model = gr.Radio(["Medium", "Long", "Flux"], label="Model Choice", value="Medium", info="Enhance your prompts with Medium or Long answers") # 6
                categorized = gr.JSON(label="Categorized (tags)* - JSON")  # 7
                rating = gr.Label(label="Rating")  # 8
                general_res = gr.Label(label="Output (tags)")  # 9
                unclassified = gr.JSON(label="Unclassified (tags)")  # 10
                clear.add(
                    [
                        download_file,
                        sorted_general_strings,
                        final_categorized_output,
                        categorized,
                        rating,
                        character_res,
                        general_res,
                        unclassified,
                        prompt_enhancer_model,
                        enhanced_tags,
                    ]
                )      
            tag_results = gr.State({})
            # Define the event listener to add the uploaded image to the gallery
            image_input.change(append_gallery, inputs=[gallery, image_input], outputs=[gallery, image_input])
            # When the upload button is clicked, add the new images to the gallery
            upload_button.upload(extend_gallery, inputs=[gallery, upload_button], outputs=gallery)
            # Event to update the selected image when an image is clicked in the gallery
            selected_image = gr.Textbox(label="Selected Image", visible=False)
            gallery.select(get_selection_from_gallery,inputs=[gallery, tag_results],outputs=[selected_image, sorted_general_strings, final_categorized_output, categorized, rating, character_res, general_res, unclassified, enhanced_tags])
            # Event to remove a selected image from the gallery
            remove_button.click(remove_image_from_gallery, inputs=[gallery, selected_image], outputs=gallery)
            # Event to for the Prompt Enhancer Button
            pe_generate_btn.click(lambda tags,model:prompt_enhancer('','',tags,model)[0],inputs=[final_categorized_output,prompt_enhancer_model],outputs=[enhanced_tags])
        submit.click(
            predictor.predict,
            inputs=[
                gallery,
                model_repo,
                general_thresh,
                general_mcut_enabled,
                character_thresh,
                character_mcut_enabled,
                characters_merge_enabled,
                reorganizer_model_repo,
                additional_tags_prepend,
                additional_tags_append,
                tag_results,
            ],
            outputs=[download_file, sorted_general_strings, final_categorized_output, categorized, rating, character_res, general_res, unclassified, tag_results,],
        )
        gr.Examples(
            [["images/1girl.png", VIT_LARGE_MODEL_DSV3_REPO, 0.35, False, 0.85, False]], 
            inputs=[
                image_input,
                model_repo,
                general_thresh,
                general_mcut_enabled,
                character_thresh,
                character_mcut_enabled,
            ],
        )
    with gr.Tab(label="Tag Categorizer + Enhancer"): 
       with gr.Row():
            with gr.Column(variant="panel"):
                input_tags = gr.Textbox(label="Input Tags (Danbooru comma-separated)", placeholder="1girl, cat, horns, blue hair, ...")
                submit_button = gr.Button(value="Submit", variant="primary", size="lg")
            with gr.Column(variant="panel"):
                categorized_string = gr.Textbox(label="Categorized (string)", show_label=True, show_copy_button=True, lines=8)
                categorized_json = gr.JSON(label="Categorized (tags) - JSON")
                submit_button.click(process_tags, inputs=[input_tags], outputs=[categorized_string, categorized_json])
            with gr.Column(variant="panel"):
                pe_generate_btn = gr.Button(value="ENHANCE TAGS", size="lg", variant="primary")
                enhanced_tags = gr.Textbox(label="Enhanced Tags", show_label=True, show_copy_button=True)
                prompt_enhancer_model = gr.Radio(["Medium", "Long", "Flux"], label="Model Choice", value="Medium", info="Enhance your prompts with Medium or Long answers")
                pe_generate_btn.click(lambda tags,model:prompt_enhancer('','',tags,model)[0],inputs=[categorized_string,prompt_enhancer_model],outputs=[enhanced_tags])
    with gr.Tab(label="Florence 2 Image Captioning"):
        with gr.Row():
            with gr.Column(variant="panel"):
                input_img = gr.Image(label="Input Picture")
                task_type = gr.Radio(choices=['Single task', 'Cascaded task'], label='Task type selector', value='Single task')
                task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Caption")
                task_type.change(fn=update_task_dropdown, inputs=task_type, outputs=task_prompt)
                text_input = gr.Textbox(label="Text Input (optional)")
                submit_btn = gr.Button(value="Submit")
            with gr.Column(variant="panel"):
                output_text = gr.Textbox(label="Output Text", show_label=True, show_copy_button=True, lines=8)
                output_img = gr.Image(label="Output Image")
        gr.Examples(
            examples=[
                ["images/image1.png", 'Object Detection'],
                ["images/image2.png", 'OCR with Region']
            ],
            inputs=[input_img, task_prompt],
            outputs=[output_text, output_img],
            fn=process_image,
            cache_examples=False,
            label='Try examples'
        )
        submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
demo.queue(max_size=2).launch()