Spaces:
Running
Running
File size: 46,264 Bytes
415a9c8 7ecfeaa d6cb571 415a9c8 7ecfeaa 415a9c8 0875f49 415a9c8 ff48ad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 |
import os
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import io
import copy
import requests
import numpy as np
import spaces
import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoProcessor
from transformers.dynamic_module_utils import get_imports
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from unittest.mock import patch
import argparse
import huggingface_hub
import onnxruntime as rt
import pandas as pd
import traceback
import tempfile
import zipfile
import re
import ast
import time
from datetime import datetime, timezone
from collections import defaultdict
from classifyTags import classify_tags
# Add scheduler code here
from apscheduler.schedulers.background import BackgroundScheduler
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
def fixed_get_imports(filename: str | os.PathLike) -> list[str]:
"""Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72."""
if not str(filename).endswith("/modeling_florence2.py"):
return get_imports(filename)
imports = get_imports(filename)
if "flash_attn" in imports:
imports.remove("flash_attn")
return imports
@spaces.GPU
def get_device_type():
import torch
if torch.cuda.is_available():
return "cuda"
else:
if (torch.backends.mps.is_available() and torch.backends.mps.is_built()):
return "mps"
else:
return "cpu"
model_id = 'MiaoshouAI/Florence-2-base-PromptGen-v2.0'
import subprocess
device = get_device_type()
if (device == "cuda"):
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v2.0", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v2.0", trust_remote_code=True)
model.to(device)
else:
#https://huggingface.co/microsoft/Florence-2-base-ft/discussions/4
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v2.0", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v2.0", trust_remote_code=True)
model.to(device)
TITLE = "Multi-Tagger"
DESCRIPTION = """
Multi-Tagger is a powerful and versatile application that integrates two cutting-edge models: Waifu Diffusion and Florence 2. This app is designed to provide comprehensive image analysis and captioning capabilities, making it a valuable tool for AI artists, researchers, and enthusiasts.
Features:
- Supports batch processing of multiple images.
- Tags images with multiple categories: general tags, character tags, and ratings.
- Displays categorized tags in a structured format.
- Includes a separate tab for image captioning using Florence 2. This model supports CUDA, MPS or CPU if one of them is available.
- Supports various captioning tasks (e.g., Caption, Detailed Caption, Object Detection), as well it can display output text and images for tasks that generate visual outputs.
Example image by [me.](https://huggingface.co/Werli)
"""
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
# Dataset v3 series of models:
SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3"
VIT_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-large-tagger-v3"
EVA02_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
# Dataset v2 series of models:
MOAT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
SWIN_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
# IdolSankaku series of models:
EVA02_LARGE_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-eva02-large-tagger-v1"
SWINV2_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-swinv2-tagger-v1"
# Files to download from the repos
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"
# LLAMA model
META_LLAMA_3_3B_REPO = "jncraton/Llama-3.2-3B-Instruct-ct2-int8"
META_LLAMA_3_8B_REPO = "avans06/Meta-Llama-3.2-8B-Instruct-ct2-int8_float16"
# https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
kaomojis = [
"0_0",
"(o)_(o)",
"+_+",
"+_-",
"._.",
"<o>_<o>",
"<|>_<|>",
"=_=",
">_<",
"3_3",
"6_9",
">_o",
"@_@",
"^_^",
"o_o",
"u_u",
"x_x",
"|_|",
"||_||",
]
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument("--score-slider-step", type=float, default=0.05)
parser.add_argument("--score-general-threshold", type=float, default=0.35)
parser.add_argument("--score-character-threshold", type=float, default=0.85)
parser.add_argument("--share", action="store_true")
return parser.parse_args()
def load_labels(dataframe) -> list[str]:
name_series = dataframe["name"]
name_series = name_series.map(
lambda x: x.replace("_", " ") if x not in kaomojis else x
)
tag_names = name_series.tolist()
rating_indexes = list(np.where(dataframe["category"] == 9)[0])
general_indexes = list(np.where(dataframe["category"] == 0)[0])
character_indexes = list(np.where(dataframe["category"] == 4)[0])
return tag_names, rating_indexes, general_indexes, character_indexes
def mcut_threshold(probs):
"""
Maximum Cut Thresholding (MCut)
Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy
for Multi-label Classification. In 11th International Symposium, IDA 2012
(pp. 172-183).
"""
sorted_probs = probs[probs.argsort()[::-1]]
difs = sorted_probs[:-1] - sorted_probs[1:]
t = difs.argmax()
thresh = (sorted_probs[t] + sorted_probs[t + 1]) / 2
return thresh
class Timer:
def __init__(self):
self.start_time = time.perf_counter() # Record the start time
self.checkpoints = [("Start", self.start_time)] # Store checkpoints
def checkpoint(self, label="Checkpoint"):
"""Record a checkpoint with a given label."""
now = time.perf_counter()
self.checkpoints.append((label, now))
def report(self, is_clear_checkpoints = True):
# Determine the max label width for alignment
max_label_length = max(len(label) for label, _ in self.checkpoints)
prev_time = self.checkpoints[0][1]
for label, curr_time in self.checkpoints[1:]:
elapsed = curr_time - prev_time
print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds")
prev_time = curr_time
if is_clear_checkpoints:
self.checkpoints.clear()
self.checkpoint() # Store checkpoints
def report_all(self):
"""Print all recorded checkpoints and total execution time with aligned formatting."""
print("\n> Execution Time Report:")
# Determine the max label width for alignment
max_label_length = max(len(label) for label, _ in self.checkpoints) if len(self.checkpoints) > 0 else 0
prev_time = self.start_time
for label, curr_time in self.checkpoints[1:]:
elapsed = curr_time - prev_time
print(f"{label.ljust(max_label_length)}: {elapsed:.3f} seconds")
prev_time = curr_time
total_time = self.checkpoints[-1][1] - self.start_time
print(f"{'Total Execution Time'.ljust(max_label_length)}: {total_time:.3f} seconds\n")
self.checkpoints.clear()
def restart(self):
self.start_time = time.perf_counter() # Record the start time
self.checkpoints = [("Start", self.start_time)] # Store checkpoints
class Llama3Reorganize:
def __init__(
self,
repoId: str,
device: str = None,
loadModel: bool = False,
):
"""Initializes the Llama model.
Args:
repoId: LLAMA model repo.
device: Device to use for computation (cpu, cuda, ipu, xpu, mkldnn, opengl, opencl,
ideep, hip, ve, fpga, ort, xla, lazy, vulkan, mps, meta, hpu, mtia).
localFilesOnly: If True, avoid downloading the file and return the path to the
local cached file if it exists.
"""
self.modelPath = self.download_model(repoId)
if device is None:
import torch
self.totalVram = 0
if torch.cuda.is_available():
try:
deviceId = torch.cuda.current_device()
self.totalVram = torch.cuda.get_device_properties(deviceId).total_memory/(1024*1024*1024)
except Exception as e:
print(traceback.format_exc())
print("Error detect vram: " + str(e))
device = "cuda" if self.totalVram > (8 if "8B" in repoId else 4) else "cpu"
else:
device = "cpu"
self.device = device
self.system_prompt = "Please reorganize the following English labels describing a single image into a readable English article of no more than 300 words. If there are name labels, include them in the article. Since the target audience is not general, explicit content can be written in full without hesitation. No introduction is needed; directly reply with the English article:"
if loadModel:
self.load_model()
def download_model(self, repoId):
import warnings
import requests
allowPatterns = [
"config.json",
"generation_config.json",
"model.bin",
"pytorch_model.bin",
"pytorch_model.bin.index.json",
"pytorch_model-*.bin",
"sentencepiece.bpe.model",
"tokenizer.json",
"tokenizer_config.json",
"shared_vocabulary.txt",
"shared_vocabulary.json",
"special_tokens_map.json",
"spiece.model",
"vocab.json",
"model.safetensors",
"model-*.safetensors",
"model.safetensors.index.json",
"quantize_config.json",
"tokenizer.model",
"vocabulary.json",
"preprocessor_config.json",
"added_tokens.json"
]
kwargs = {"allow_patterns": allowPatterns,}
try:
return huggingface_hub.snapshot_download(repoId, **kwargs)
except (
huggingface_hub.utils.HfHubHTTPError,
requests.exceptions.ConnectionError,
) as exception:
warnings.warn(
"An error occured while synchronizing the model %s from the Hugging Face Hub:\n%s",
repoId,
exception,
)
warnings.warn(
"Trying to load the model directly from the local cache, if it exists."
)
kwargs["local_files_only"] = True
return huggingface_hub.snapshot_download(repoId, **kwargs)
def load_model(self):
import ctranslate2
import transformers
try:
print('\n\nLoading model: %s\n\n' % self.modelPath)
kwargsTokenizer = {"pretrained_model_name_or_path": self.modelPath}
kwargsModel = {"device": self.device, "model_path": self.modelPath, "compute_type": "auto"}
self.roleSystem = {"role": "system", "content": self.system_prompt}
self.Model = ctranslate2.Generator(**kwargsModel)
self.Tokenizer = transformers.AutoTokenizer.from_pretrained(**kwargsTokenizer)
self.terminators = [self.Tokenizer.eos_token_id, self.Tokenizer.convert_tokens_to_ids("<|eot_id|>")]
except Exception as e:
self.release_vram()
raise e
def release_vram(self):
try:
import torch
if torch.cuda.is_available():
if getattr(self, "Model", None) is not None and getattr(self.Model, "unload_model", None) is not None:
self.Model.unload_model()
if getattr(self, "Tokenizer", None) is not None:
del self.Tokenizer
if getattr(self, "Model", None) is not None:
del self.Model
import gc
gc.collect()
try:
torch.cuda.empty_cache()
except Exception as e:
print(traceback.format_exc())
print("\tcuda empty cache, error: " + str(e))
print("release vram end.")
except Exception as e:
print(traceback.format_exc())
print("Error release vram: " + str(e))
def reorganize(self, text: str, max_length: int = 400):
output = None
result = None
try:
input_ids = self.Tokenizer.apply_chat_template([self.roleSystem, {"role": "user", "content": text + "\n\nHere's the reorganized English article:"}], tokenize=False, add_generation_prompt=True)
source = self.Tokenizer.convert_ids_to_tokens(self.Tokenizer.encode(input_ids))
output = self.Model.generate_batch([source], max_length=max_length, max_batch_size=2, no_repeat_ngram_size=3, beam_size=2, sampling_temperature=0.7, sampling_topp=0.9, include_prompt_in_result=False, end_token=self.terminators)
target = output[0]
result = self.Tokenizer.decode(target.sequences_ids[0])
if len(result) > 2:
if result[0] == "\"" and result[len(result) - 1] == "\"":
result = result[1:-1]
elif result[0] == "'" and result[len(result) - 1] == "'":
result = result[1:-1]
elif result[0] == "「" and result[len(result) - 1] == "」":
result = result[1:-1]
elif result[0] == "『" and result[len(result) - 1] == "』":
result = result[1:-1]
except Exception as e:
print(traceback.format_exc())
print("Error reorganize text: " + str(e))
return result
class Predictor:
def __init__(self):
self.model_target_size = None
self.last_loaded_repo = None
def download_model(self, model_repo):
csv_path = huggingface_hub.hf_hub_download(
model_repo,
LABEL_FILENAME,
)
model_path = huggingface_hub.hf_hub_download(
model_repo,
MODEL_FILENAME,
)
return csv_path, model_path
def load_model(self, model_repo):
if model_repo == self.last_loaded_repo:
return
csv_path, model_path = self.download_model(model_repo)
tags_df = pd.read_csv(csv_path)
sep_tags = load_labels(tags_df)
self.tag_names = sep_tags[0]
self.rating_indexes = sep_tags[1]
self.general_indexes = sep_tags[2]
self.character_indexes = sep_tags[3]
model = rt.InferenceSession(model_path)
_, height, width, _ = model.get_inputs()[0].shape
self.model_target_size = height
self.last_loaded_repo = model_repo
self.model = model
def prepare_image(self, path):
image = Image.open(path)
image = image.convert("RGBA")
target_size = self.model_target_size
canvas = Image.new("RGBA", image.size, (255, 255, 255))
canvas.alpha_composite(image)
image = canvas.convert("RGB")
# Pad image to square
image_shape = image.size
max_dim = max(image_shape)
pad_left = (max_dim - image_shape[0]) // 2
pad_top = (max_dim - image_shape[1]) // 2
padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
padded_image.paste(image, (pad_left, pad_top))
# Resize
if max_dim != target_size:
padded_image = padded_image.resize(
(target_size, target_size),
Image.BICUBIC,
)
# Convert to numpy array
image_array = np.asarray(padded_image, dtype=np.float32)
# Convert PIL-native RGB to BGR
image_array = image_array[:, :, ::-1]
return np.expand_dims(image_array, axis=0)
def create_file(self, text: str, directory: str, fileName: str) -> str:
# Write the text to a file
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file:
file.write(text)
return file.name
def predict(
self,
gallery,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
characters_merge_enabled,
llama3_reorganize_model_repo,
additional_tags_prepend,
additional_tags_append,
tag_results,
progress=gr.Progress()
):
gallery_len = len(gallery)
print(f"Predict load model: {model_repo}, gallery length: {gallery_len}")
timer = Timer() # Create a timer
progressRatio = 0.5 if llama3_reorganize_model_repo else 1
progressTotal = gallery_len + 1
current_progress = 0
self.load_model(model_repo)
current_progress += progressRatio/progressTotal;
progress(current_progress, desc="Initialize wd model finished")
timer.checkpoint(f"Initialize wd model")
# Result
txt_infos = []
output_dir = tempfile.mkdtemp()
if not os.path.exists(output_dir):
os.makedirs(output_dir)
sorted_general_strings = ""
rating = None
character_res = None
general_res = None
if llama3_reorganize_model_repo:
print(f"Llama3 reorganize load model {llama3_reorganize_model_repo}")
llama3_reorganize = Llama3Reorganize(llama3_reorganize_model_repo, loadModel=True)
current_progress += progressRatio/progressTotal;
progress(current_progress, desc="Initialize llama3 model finished")
timer.checkpoint(f"Initialize llama3 model")
timer.report()
prepend_list = [tag.strip() for tag in additional_tags_prepend.split(",") if tag.strip()]
append_list = [tag.strip() for tag in additional_tags_append.split(",") if tag.strip()]
if prepend_list and append_list:
append_list = [item for item in append_list if item not in prepend_list]
# Dictionary to track counters for each filename
name_counters = defaultdict(int)
# New code to create categorized output string
categorized_output_strings = []
for idx, value in enumerate(gallery):
try:
image_path = value[0]
image_name = os.path.splitext(os.path.basename(image_path))[0]
# Increment the counter for the current name
name_counters[image_name] += 1
if name_counters[image_name] > 1:
image_name = f"{image_name}_{name_counters[image_name]:02d}"
image = self.prepare_image(image_path)
input_name = self.model.get_inputs()[0].name
label_name = self.model.get_outputs()[0].name
print(f"Gallery {idx:02d}: Starting run wd model...")
preds = self.model.run([label_name], {input_name: image})[0]
labels = list(zip(self.tag_names, preds[0].astype(float)))
# First 4 labels are actually ratings: pick one with argmax
ratings_names = [labels[i] for i in self.rating_indexes]
rating = dict(ratings_names)
# Then we have general tags: pick any where prediction confidence > threshold
general_names = [labels[i] for i in self.general_indexes]
if general_mcut_enabled:
general_probs = np.array([x[1] for x in general_names])
general_thresh = mcut_threshold(general_probs)
general_res = [x for x in general_names if x[1] > general_thresh]
general_res = dict(general_res)
# Everything else is characters: pick any where prediction confidence > threshold
character_names = [labels[i] for i in self.character_indexes]
if character_mcut_enabled:
character_probs = np.array([x[1] for x in character_names])
character_thresh = mcut_threshold(character_probs)
character_thresh = max(0.15, character_thresh)
character_res = [x for x in character_names if x[1] > character_thresh]
character_res = dict(character_res)
character_list = list(character_res.keys())
sorted_general_list = sorted(
general_res.items(),
key=lambda x: x[1],
reverse=True,
)
sorted_general_list = [x[0] for x in sorted_general_list]
#Remove values from character_list that already exist in sorted_general_list
character_list = [item for item in character_list if item not in sorted_general_list]
#Remove values from sorted_general_list that already exist in prepend_list or append_list
if prepend_list:
sorted_general_list = [item for item in sorted_general_list if item not in prepend_list]
if append_list:
sorted_general_list = [item for item in sorted_general_list if item not in append_list]
sorted_general_list = prepend_list + sorted_general_list + append_list
sorted_general_strings = ", ".join((character_list if characters_merge_enabled else []) + sorted_general_list).replace("(", "\(").replace(")", "\)")
classified_tags, unclassified_tags = classify_tags(sorted_general_list)
# Create a single string of all categorized tags
categorized_output_string = ', '.join([', '.join(tags) for tags in classified_tags.values()])
categorized_output_strings.append(categorized_output_string)
current_progress += progressRatio/progressTotal;
progress(current_progress, desc=f"image{idx:02d}, predict finished")
timer.checkpoint(f"image{idx:02d}, predict finished")
if llama3_reorganize_model_repo:
print(f"Starting reorganize with llama3...")
reorganize_strings = llama3_reorganize.reorganize(sorted_general_strings)
reorganize_strings = re.sub(r" *Title: *", "", reorganize_strings)
reorganize_strings = re.sub(r"\n+", ",", reorganize_strings)
reorganize_strings = re.sub(r",,+", ",", reorganize_strings)
sorted_general_strings += "," + reorganize_strings
current_progress += progressRatio/progressTotal;
progress(current_progress, desc=f"image{idx:02d}, llama3 reorganize finished")
timer.checkpoint(f"image{idx:02d}, llama3 reorganize finished")
txt_file = self.create_file(sorted_general_strings, output_dir, image_name + ".txt")
txt_infos.append({"path":txt_file, "name": image_name + ".txt"})
tag_results[image_path] = { "strings": sorted_general_strings, "classified_tags": classified_tags, "rating": rating, "character_res": character_res, "general_res": general_res, "unclassified_tags": unclassified_tags }
timer.report()
except Exception as e:
print(traceback.format_exc())
print("Error predict: " + str(e))
# Result
download = []
if txt_infos is not None and len(txt_infos) > 0:
downloadZipPath = os.path.join(output_dir, "images-tagger-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip")
with zipfile.ZipFile(downloadZipPath, 'w', zipfile.ZIP_DEFLATED) as taggers_zip:
for info in txt_infos:
# Get file name from lookup
taggers_zip.write(info["path"], arcname=info["name"])
download.append(downloadZipPath)
if llama3_reorganize_model_repo:
llama3_reorganize.release_vram()
del llama3_reorganize
progress(1, desc=f"Predict completed")
timer.report_all() # Print all recorded times
print("Predict is complete.")
# Collect all categorized output strings into a single string
final_categorized_output = ', '.join(categorized_output_strings)
return download, sorted_general_strings, classified_tags, rating, character_res, general_res, unclassified_tags, tag_results, final_categorized_output
# END
def get_selection_from_gallery(gallery: list, tag_results: dict, selected_state: gr.SelectData):
if not selected_state:
return selected_state
tag_result = { "strings": "", "classified_tags": "{}", "rating": "", "character_res": "", "general_res": "", "unclassified_tags": "{}" }
if selected_state.value["image"]["path"] in tag_results:
tag_result = tag_results[selected_state.value["image"]["path"]]
return (selected_state.value["image"]["path"], selected_state.value["caption"]), tag_result["strings"], tag_result["classified_tags"], tag_result["rating"], tag_result["character_res"], tag_result["general_res"], tag_result["unclassified_tags"]
def append_gallery(gallery: list, image: str):
if gallery is None:
gallery = []
if not image:
return gallery, None
gallery.append(image)
return gallery, None
def extend_gallery(gallery: list, images):
if gallery is None:
gallery = []
if not images:
return gallery
# Combine the new images with the existing gallery images
gallery.extend(images)
return gallery
def remove_image_from_gallery(gallery: list, selected_image: str):
if not gallery or not selected_image:
return gallery
selected_image = ast.literal_eval(selected_image) #Use ast.literal_eval to parse text into a tuple.
# Remove the selected image from the gallery
if selected_image in gallery:
gallery.remove(selected_image)
return gallery
# END
def fig_to_pil(fig):
buf = io.BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
return Image.open(buf)
@spaces.GPU
def run_example(task_prompt, image, text_input=None):
if text_input is None:
prompt = task_prompt
else:
prompt = task_prompt + text_input
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(image.width, image.height)
)
return parsed_answer
def plot_bbox(image, data):
fig, ax = plt.subplots()
ax.imshow(image)
for bbox, label in zip(data['bboxes'], data['labels']):
x1, y1, x2, y2 = bbox
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
ax.add_patch(rect)
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
ax.axis('off')
return fig
def draw_polygons(image, prediction, fill_mask=False):
draw = ImageDraw.Draw(image)
scale = 1
for polygons, label in zip(prediction['polygons'], prediction['labels']):
color = random.choice(colormap)
fill_color = random.choice(colormap) if fill_mask else None
for _polygon in polygons:
_polygon = np.array(_polygon).reshape(-1, 2)
if len(_polygon) < 3:
print('Invalid polygon:', _polygon)
continue
_polygon = (_polygon * scale).reshape(-1).tolist()
if fill_mask:
draw.polygon(_polygon, outline=color, fill=fill_color)
else:
draw.polygon(_polygon, outline=color)
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
return image
def convert_to_od_format(data):
bboxes = data.get('bboxes', [])
labels = data.get('bboxes_labels', [])
od_results = {
'bboxes': bboxes,
'labels': labels
}
return od_results
def draw_ocr_bboxes(image, prediction):
scale = 1
draw = ImageDraw.Draw(image)
bboxes, labels = prediction['quad_boxes'], prediction['labels']
for box, label in zip(bboxes, labels):
color = random.choice(colormap)
new_box = (np.array(box) * scale).tolist()
draw.polygon(new_box, width=3, outline=color)
draw.text((new_box[0]+8, new_box[1]+2),
"{}".format(label),
align="right",
fill=color)
return image
def convert_to_od_format(data):
bboxes = data.get('bboxes', [])
labels = data.get('bboxes_labels', [])
od_results = {
'bboxes': bboxes,
'labels': labels
}
return od_results
def draw_ocr_bboxes(image, prediction):
scale = 1
draw = ImageDraw.Draw(image)
bboxes, labels = prediction['quad_boxes'], prediction['labels']
for box, label in zip(bboxes, labels):
color = random.choice(colormap)
new_box = (np.array(box) * scale).tolist()
draw.polygon(new_box, width=3, outline=color)
draw.text((new_box[0]+8, new_box[1]+2),
"{}".format(label),
align="right",
fill=color)
return image
def process_image(image, task_prompt, text_input=None):
# Test
if isinstance(image, str): # If image is a file path
image = Image.open(image) # Load image from file path
else: # If image is a NumPy array
image = Image.fromarray(image) # Convert NumPy array to PIL Image
if task_prompt == 'Caption':
task_prompt = '<CAPTION>'
results = run_example(task_prompt, image)
return results[task_prompt], None
elif task_prompt == 'Detailed Caption':
task_prompt = '<DETAILED_CAPTION>'
results = run_example(task_prompt, image)
return results[task_prompt], None
elif task_prompt == 'More Detailed Caption':
task_prompt = '<MORE_DETAILED_CAPTION>'
results = run_example(task_prompt, image)
return results[task_prompt], plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
elif task_prompt == 'Caption + Grounding':
task_prompt = '<CAPTION>'
results = run_example(task_prompt, image)
text_input = results[task_prompt]
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
results = run_example(task_prompt, image, text_input)
results['<CAPTION>'] = text_input
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Detailed Caption + Grounding':
task_prompt = '<DETAILED_CAPTION>'
results = run_example(task_prompt, image)
text_input = results[task_prompt]
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
results = run_example(task_prompt, image, text_input)
results['<DETAILED_CAPTION>'] = text_input
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
return results, fig_to_pil(fig)
elif task_prompt == 'More Detailed Caption + Grounding':
task_prompt = '<MORE_DETAILED_CAPTION>'
results = run_example(task_prompt, image)
text_input = results[task_prompt]
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
results = run_example(task_prompt, image, text_input)
results['<MORE_DETAILED_CAPTION>'] = text_input
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Object Detection':
task_prompt = '<OD>'
results = run_example(task_prompt, image)
fig = plot_bbox(image, results['<OD>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Dense Region Caption':
task_prompt = '<DENSE_REGION_CAPTION>'
results = run_example(task_prompt, image)
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Region Proposal':
task_prompt = '<REGION_PROPOSAL>'
results = run_example(task_prompt, image)
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Caption to Phrase Grounding':
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
results = run_example(task_prompt, image, text_input)
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
return results, fig_to_pil(fig)
elif task_prompt == 'Referring Expression Segmentation':
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
results = run_example(task_prompt, image, text_input)
output_image = copy.deepcopy(image)
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
return results, output_image
elif task_prompt == 'Region to Segmentation':
task_prompt = '<REGION_TO_SEGMENTATION>'
results = run_example(task_prompt, image, text_input)
output_image = copy.deepcopy(image)
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
return results, output_image
elif task_prompt == 'Open Vocabulary Detection':
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
results = run_example(task_prompt, image, text_input)
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
fig = plot_bbox(image, bbox_results)
return results, fig_to_pil(fig)
elif task_prompt == 'Region to Category':
task_prompt = '<REGION_TO_CATEGORY>'
results = run_example(task_prompt, image, text_input)
return results, None
elif task_prompt == 'Region to Description':
task_prompt = '<REGION_TO_DESCRIPTION>'
results = run_example(task_prompt, image, text_input)
return results, None
elif task_prompt == 'OCR':
task_prompt = '<OCR>'
results = run_example(task_prompt, image)
return results, None
elif task_prompt == 'OCR with Region':
task_prompt = '<OCR_WITH_REGION>'
results = run_example(task_prompt, image)
output_image = copy.deepcopy(image)
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
return results, output_image
else:
return "", None # Return empty string and None for unknown task prompts
##############
# Custom CSS to set the height of the gr.Dropdown menu
css = """
div.progress-level div.progress-level-inner {
text-align: left !important;
width: 55.5% !important;
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
single_task_list =[
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
'Referring Expression Segmentation', 'Region to Segmentation',
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
'OCR', 'OCR with Region'
]
cascaded_task_list =[
'Caption + Grounding', 'Detailed Caption + Grounding', 'More Detailed Caption + Grounding'
]
def update_task_dropdown(choice):
if choice == 'Cascaded task':
return gr.Dropdown(choices=cascaded_task_list, value='Caption + Grounding')
else:
return gr.Dropdown(choices=single_task_list, value='Caption')
args = parse_args()
predictor = Predictor()
dropdown_list = [
EVA02_LARGE_MODEL_DSV3_REPO,
SWINV2_MODEL_DSV3_REPO,
CONV_MODEL_DSV3_REPO,
VIT_MODEL_DSV3_REPO,
VIT_LARGE_MODEL_DSV3_REPO,
# ---
MOAT_MODEL_DSV2_REPO,
SWIN_MODEL_DSV2_REPO,
CONV_MODEL_DSV2_REPO,
CONV2_MODEL_DSV2_REPO,
VIT_MODEL_DSV2_REPO,
# ---
SWINV2_MODEL_IS_DSV1_REPO,
EVA02_LARGE_MODEL_IS_DSV1_REPO,
]
llama_list = [
META_LLAMA_3_3B_REPO,
META_LLAMA_3_8B_REPO,
]
# This is workaround will make the space restart every 2 days. (for test).
def _restart_space():
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable is not set.")
huggingface_hub.HfApi().restart_space(repo_id="Werli/Multi-Tagger", token=HF_TOKEN, factory_reboot=False)
scheduler = BackgroundScheduler()
# Add a job to restart the space every 2 days (172800 seconds)
restart_space_job = scheduler.add_job(_restart_space, "interval", seconds=172800)
# Start the scheduler
scheduler.start()
next_run_time_utc = restart_space_job.next_run_time.astimezone(timezone.utc)
NEXT_RESTART = f"Next Restart: {next_run_time_utc.strftime('%Y-%m-%d %H:%M:%S')} (UTC) - The space will restart every 2 days to ensure stability and performance. It uses a background scheduler to handle the restart process."
# Using "JohnSmith9982/small_and_pretty" theme
with gr.Blocks(title=TITLE, css=css, theme="Werli/Multi-Tagger", fill_width=True) as demo:
gr.Markdown(value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>")
gr.Markdown(value=DESCRIPTION)
gr.Markdown(NEXT_RESTART)
with gr.Tab(label="Waifu Diffusion"):
with gr.Row():
with gr.Column():
submit = gr.Button(value="Submit", variant="primary", size="lg")
with gr.Column(variant="panel"):
# Create an Image component for uploading images
image_input = gr.Image(label="Upload an Image or clicking paste from clipboard button", type="filepath", sources=["upload", "clipboard"], height=150)
with gr.Row():
upload_button = gr.UploadButton("Upload multiple images", file_types=["image"], file_count="multiple", size="sm")
remove_button = gr.Button("Remove Selected Image", size="sm")
gallery = gr.Gallery(columns=5, rows=5, show_share_button=False, interactive=True, height="500px", label="Gallery that displaying a grid of images")
model_repo = gr.Dropdown(
dropdown_list,
value=EVA02_LARGE_MODEL_DSV3_REPO,
label="Model",
)
with gr.Row():
general_thresh = gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.score_general_threshold,
label="General Tags Threshold",
scale=3,
)
general_mcut_enabled = gr.Checkbox(
value=False,
label="Use MCut threshold",
scale=1,
)
with gr.Row():
character_thresh = gr.Slider(
0,
1,
step=args.score_slider_step,
value=args.score_character_threshold,
label="Character Tags Threshold",
scale=3,
)
character_mcut_enabled = gr.Checkbox(
value=False,
label="Use MCut threshold",
scale=1,
)
with gr.Row():
characters_merge_enabled = gr.Checkbox(
value=True,
label="Merge characters into the string output",
scale=1,
)
with gr.Row():
llama3_reorganize_model_repo = gr.Dropdown(
[None] + llama_list,
value=None,
label="Llama3 Model",
info="Use the Llama3 model to reorganize the article (Note: very slow)",
)
with gr.Row():
additional_tags_prepend = gr.Text(label="Prepend Additional tags (comma split)")
additional_tags_append = gr.Text(label="Append Additional tags (comma split)")
with gr.Row():
clear = gr.ClearButton(
components=[
gallery,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
characters_merge_enabled,
llama3_reorganize_model_repo,
additional_tags_prepend,
additional_tags_append,
],
variant="secondary",
size="lg",
)
with gr.Column(variant="panel"):
download_file = gr.File(label="Output (Download)")
sorted_general_strings = gr.Textbox(label="Output (string)", show_label=True, show_copy_button=True)
categorized_output = gr.Textbox(label="Categorized Output (string)", show_label=True, show_copy_button=True)
categorized = gr.JSON(label="Categorized (tags)")
rating = gr.Label(label="Rating")
character_res = gr.Label(label="Output (characters)")
general_res = gr.Label(label="Output (tags)")
unclassified = gr.JSON(label="Unclassified (tags)")
clear.add(
[
download_file,
sorted_general_strings,
categorized,
rating,
character_res,
general_res,
unclassified,
]
)
tag_results = gr.State({})
# Define the event listener to add the uploaded image to the gallery
image_input.change(append_gallery, inputs=[gallery, image_input], outputs=[gallery, image_input])
# When the upload button is clicked, add the new images to the gallery
upload_button.upload(extend_gallery, inputs=[gallery, upload_button], outputs=gallery)
# Event to update the selected image when an image is clicked in the gallery
selected_image = gr.Textbox(label="Selected Image", visible=False)
gallery.select(get_selection_from_gallery, inputs=[gallery, tag_results], outputs=[selected_image, sorted_general_strings, categorized, rating, character_res, general_res, unclassified])
# Event to remove a selected image from the gallery
remove_button.click(remove_image_from_gallery, inputs=[gallery, selected_image], outputs=gallery)
submit.click(
predictor.predict,
inputs=[
gallery,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
characters_merge_enabled,
llama3_reorganize_model_repo,
additional_tags_prepend,
additional_tags_append,
tag_results,
],
outputs=[download_file, sorted_general_strings, categorized, rating, character_res, general_res, unclassified, tag_results, categorized_output,],
)
gr.Examples(
[["images/1girl.png", VIT_LARGE_MODEL_DSV3_REPO, 0.35, False, 0.85, False]],
inputs=[
image_input,
model_repo,
general_thresh,
general_mcut_enabled,
character_thresh,
character_mcut_enabled,
],
)
with gr.Tab(label="Florence 2 Image Captioning"):
with gr.Row():
with gr.Column(variant="panel"):
input_img = gr.Image(label="Input Picture")
task_type = gr.Radio(choices=['Single task', 'Cascaded task'], label='Task type selector', value='Single task')
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="Caption")
task_type.change(fn=update_task_dropdown, inputs=task_type, outputs=task_prompt)
text_input = gr.Textbox(label="Text Input (optional)")
submit_btn = gr.Button(value="Submit")
with gr.Column(variant="panel"):
#OUTPUT
output_text = gr.Textbox(label="Output Text", show_label=True, show_copy_button=True, lines=8) # Here is the problem!
output_img = gr.Image(label="Output Image")
gr.Examples(
examples=[
["images/image1.png", 'Object Detection'],
["images/image2.png", 'OCR with Region']
],
inputs=[input_img, task_prompt],
outputs=[output_text, output_img],
fn=process_image,
cache_examples=False,
label='Try examples'
)
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
demo.queue(max_size=2)
demo.launch(debug=True) # test |