import numpy as np import cv2 import math def f(r, T=0.6, beta=0.1): return np.where(r < T, beta + (1 - beta) / T * r, 1) # Get the bounding box of the mask def get_bbox_from_mask(mask): h,w = mask.shape[0],mask.shape[1] if mask.sum() < 10: return 0,h,0,w rows = np.any(mask,axis=1) cols = np.any(mask,axis=0) y1,y2 = np.where(rows)[0][[0,-1]] x1,x2 = np.where(cols)[0][[0,-1]] return (y1,y2,x1,x2) # Expand the bounding box def expand_bbox(mask, yyxx, ratio, min_crop=0): y1,y2,x1,x2 = yyxx H,W = mask.shape[0], mask.shape[1] yyxx_area = (y2-y1+1) * (x2-x1+1) r1 = yyxx_area / (H * W) r2 = f(r1) ratio = math.sqrt(r2 / r1) xc, yc = 0.5 * (x1 + x2), 0.5 * (y1 + y2) h = ratio * (y2-y1+1) w = ratio * (x2-x1+1) h = max(h,min_crop) w = max(w,min_crop) x1 = int(xc - w * 0.5) x2 = int(xc + w * 0.5) y1 = int(yc - h * 0.5) y2 = int(yc + h * 0.5) x1 = max(0,x1) x2 = min(W,x2) y1 = max(0,y1) y2 = min(H,y2) return (y1,y2,x1,x2) # Pad the image to a square shape def pad_to_square(image, pad_value = 255, random = False): H,W = image.shape[0], image.shape[1] if H == W: return image padd = abs(H - W) if random: padd_1 = int(np.random.randint(0,padd)) else: padd_1 = int(padd / 2) padd_2 = padd - padd_1 if len(image.shape) == 2: if H > W: pad_param = ((0, 0), (padd_1, padd_2)) else: pad_param = ((padd_1, padd_2), (0, 0)) elif len(image.shape) == 3: if H > W: pad_param = ((0, 0), (padd_1, padd_2), (0, 0)) else: pad_param = ((padd_1, padd_2), (0, 0), (0, 0)) image = np.pad(image, pad_param, 'constant', constant_values=pad_value) return image # Expand the image and mask def expand_image_mask(image, mask, ratio=1.4): h,w = image.shape[0], image.shape[1] H,W = int(h * ratio), int(w * ratio) h1 = int((H - h) // 2) h2 = H - h - h1 w1 = int((W -w) // 2) w2 = W -w - w1 pad_param_image = ((h1,h2),(w1,w2),(0,0)) pad_param_mask = ((h1,h2),(w1,w2)) image = np.pad(image, pad_param_image, 'constant', constant_values=255) mask = np.pad(mask, pad_param_mask, 'constant', constant_values=0) return image, mask # Convert the bounding box to a square shape def box2squre(image, box): H,W = image.shape[0], image.shape[1] y1,y2,x1,x2 = box cx = (x1 + x2) // 2 cy = (y1 + y2) // 2 h,w = y2-y1, x2-x1 if h >= w: x1 = cx - h//2 x2 = cx + h//2 else: y1 = cy - w//2 y2 = cy + w//2 x1 = max(0,x1) x2 = min(W,x2) y1 = max(0,y1) y2 = min(H,y2) return (y1,y2,x1,x2) # Crop the predicted image back to the original image def crop_back( pred, tar_image, extra_sizes, tar_box_yyxx_crop): H1, W1, H2, W2 = extra_sizes y1,y2,x1,x2 = tar_box_yyxx_crop pred = cv2.resize(pred, (W2, H2)) m = 2 # maigin_pixel if W1 == H1: if m != 0: tar_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m] else: tar_image[y1 :y2, x1:x2, :] = pred[:, :] return tar_image if W1 < W2: pad1 = int((W2 - W1) / 2) pad2 = W2 - W1 - pad1 pred = pred[:,pad1: -pad2, :] else: pad1 = int((H2 - H1) / 2) pad2 = H2 - H1 - pad1 pred = pred[pad1: -pad2, :, :] gen_image = tar_image.copy() if m != 0: gen_image[y1+m :y2-m, x1+m:x2-m, :] = pred[m:-m, m:-m] else: gen_image[y1 :y2, x1:x2, :] = pred[:, :] return gen_image