Insert-Anything / app.py
WensongSong's picture
Update app.py
a19d671 verified
raw
history blame
14.3 kB
import os
import sys
import cv2
import numpy as np
import torch
import gradio as gr
from PIL import Image, ImageFilter, ImageDraw
from huggingface_hub import snapshot_download
from diffusers import FluxFillPipeline, FluxPriorReduxPipeline
import math
from utils.utils import get_bbox_from_mask, expand_bbox, pad_to_square, box2squre, crop_back, expand_image_mask
import os,sys
os.system("python -m pip install -e segment_anything")
os.system("python -m pip install -e GroundingDINO")
sys.path.append(os.path.join(os.getcwd(), "GroundingDINO"))
sys.path.append(os.path.join(os.getcwd(), "segment_anything"))
os.system("wget https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth")
os.system("wget https://huggingface.co/spaces/mrtlive/segment-anything-model/resolve/main/sam_vit_h_4b8939.pth")
import torchvision
from GroundingDINO.groundingdino.util.inference import load_model
from segment_anything import build_sam, SamPredictor
import spaces
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# GroundingDINO config and checkpoint
GROUNDING_DINO_CONFIG_PATH = "./GroundingDINO_SwinB.cfg.py"
GROUNDING_DINO_CHECKPOINT_PATH = "./groundingdino_swinb_cogcoor.pth"
# Segment-Anything checkpoint
SAM_ENCODER_VERSION = "vit_h"
SAM_CHECKPOINT_PATH = "./sam_vit_h_4b8939.pth"
# Building GroundingDINO inference model
groundingdino_model = load_model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device="cuda")
# Building SAM Model and SAM Predictor
sam = build_sam(checkpoint=SAM_CHECKPOINT_PATH)
sam.to(device="cuda")
sam_predictor = SamPredictor(sam)
def transform_image(image_pil):
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image
def get_grounding_output(model, image, caption, box_threshold=0.25, text_threshold=0.25, with_logits=True):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(
logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(
pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
def get_mask(image, label):
global groundingdino_model, sam_predictor
image_pil = image.convert("RGB")
transformed_image = transform_image(image_pil)
boxes_filt, scores, pred_phrases = get_grounding_output(
groundingdino_model, transformed_image, label
)
size = image_pil.size
# process boxes
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
# nms
nms_idx = torchvision.ops.nms(
boxes_filt, scores, 0.8).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
image = np.array(image_pil)
sam_predictor.set_image(image)
transformed_boxes = sam_predictor.transform.apply_boxes_torch(
boxes_filt, image.shape[:2]).to("cuda")
masks, _, _ = sam_predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
result_mask = masks[0][0].cpu().numpy()
result_mask = Image.fromarray(result_mask)
return result_mask
hf_token = os.getenv("HF_TOKEN")
snapshot_download(repo_id="black-forest-labs/FLUX.1-Fill-dev", local_dir="./FLUX.1-Fill-dev", token=hf_token)
snapshot_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", local_dir="./FLUX.1-Redux-dev", token=hf_token)
snapshot_download(repo_id="WensongSong/Insert-Anything", local_dir="./insertanything_model", token=hf_token)
dtype = torch.bfloat16
size = (768, 768)
pipe = FluxFillPipeline.from_pretrained(
"./FLUX.1-Fill-dev",
torch_dtype=dtype
).to("cuda")
pipe.load_lora_weights(
"./insertanything_model/20250321_steps5000_pytorch_lora_weights.safetensors"
)
redux = FluxPriorReduxPipeline.from_pretrained("./FLUX.1-Redux-dev").to(dtype=dtype).to("cuda")
### example #####
ref_dir='./examples/ref_image'
ref_mask_dir='./examples/ref_mask'
image_dir='./examples/source_image'
image_mask_dir='./examples/source_mask'
ref_list=[os.path.join(ref_dir,file) for file in os.listdir(ref_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ]
ref_list.sort()
ref_mask_list=[os.path.join(ref_mask_dir,file) for file in os.listdir(ref_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file]
ref_mask_list.sort()
image_list=[os.path.join(image_dir,file) for file in os.listdir(image_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file ]
image_list.sort()
image_mask_list=[os.path.join(image_mask_dir,file) for file in os.listdir(image_mask_dir) if '.jpg' in file or '.png' in file or '.jpeg' in file]
image_mask_list.sort()
### example #####
@spaces.GPU
def run_local(base_image, base_mask, reference_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt):
if base_mask_option == "Draw Mask":
tar_image = base_image["background"]
tar_mask = base_image["layers"][0]
else:
tar_image = base_image["background"]
tar_mask = base_mask["background"]
if ref_mask_option == "Draw Mask":
ref_image = reference_image["background"]
ref_mask = reference_image["layers"][0]
elif ref_mask_option == "Upload with Mask":
ref_image = reference_image["background"]
ref_mask = ref_mask["background"]
else:
ref_image = reference_image["background"]
ref_mask = get_mask(ref_image, text_prompt)
tar_image = tar_image.convert("RGB")
tar_mask = tar_mask.convert("L")
ref_image = ref_image.convert("RGB")
ref_mask = ref_mask.convert("L")
return_ref_mask = ref_mask.copy()
tar_image = np.asarray(tar_image)
tar_mask = np.asarray(tar_mask)
tar_mask = np.where(tar_mask > 128, 1, 0).astype(np.uint8)
ref_image = np.asarray(ref_image)
ref_mask = np.asarray(ref_mask)
ref_mask = np.where(ref_mask > 128, 1, 0).astype(np.uint8)
if tar_mask.sum() == 0:
raise gr.Error('No mask for the background image.Please check mask button!')
if ref_mask.sum() == 0:
raise gr.Error('No mask for the reference image.Please check mask button!')
ref_box_yyxx = get_bbox_from_mask(ref_mask)
ref_mask_3 = np.stack([ref_mask,ref_mask,ref_mask],-1)
masked_ref_image = ref_image * ref_mask_3 + np.ones_like(ref_image) * 255 * (1-ref_mask_3)
y1,y2,x1,x2 = ref_box_yyxx
masked_ref_image = masked_ref_image[y1:y2,x1:x2,:]
ref_mask = ref_mask[y1:y2,x1:x2]
ratio = 1.3
masked_ref_image, ref_mask = expand_image_mask(masked_ref_image, ref_mask, ratio=ratio)
masked_ref_image = pad_to_square(masked_ref_image, pad_value = 255, random = False)
kernel = np.ones((7, 7), np.uint8)
iterations = 2
tar_mask = cv2.dilate(tar_mask, kernel, iterations=iterations)
# zome in
tar_box_yyxx = get_bbox_from_mask(tar_mask)
tar_box_yyxx = expand_bbox(tar_mask, tar_box_yyxx, ratio=1.2)
tar_box_yyxx_crop = expand_bbox(tar_image, tar_box_yyxx, ratio=2) #1.2 1.6
tar_box_yyxx_crop = box2squre(tar_image, tar_box_yyxx_crop) # crop box
y1,y2,x1,x2 = tar_box_yyxx_crop
old_tar_image = tar_image.copy()
tar_image = tar_image[y1:y2,x1:x2,:]
tar_mask = tar_mask[y1:y2,x1:x2]
H1, W1 = tar_image.shape[0], tar_image.shape[1]
# zome in
tar_mask = pad_to_square(tar_mask, pad_value=0)
tar_mask = cv2.resize(tar_mask, size)
masked_ref_image = cv2.resize(masked_ref_image.astype(np.uint8), size).astype(np.uint8)
pipe_prior_output = redux(Image.fromarray(masked_ref_image))
tar_image = pad_to_square(tar_image, pad_value=255)
H2, W2 = tar_image.shape[0], tar_image.shape[1]
tar_image = cv2.resize(tar_image, size)
diptych_ref_tar = np.concatenate([masked_ref_image, tar_image], axis=1)
tar_mask = np.stack([tar_mask,tar_mask,tar_mask],-1)
mask_black = np.ones_like(tar_image) * 0
mask_diptych = np.concatenate([mask_black, tar_mask], axis=1)
diptych_ref_tar = Image.fromarray(diptych_ref_tar)
mask_diptych[mask_diptych == 1] = 255
mask_diptych = Image.fromarray(mask_diptych)
generator = torch.Generator("cuda").manual_seed(seed)
edited_image = pipe(
image=diptych_ref_tar,
mask_image=mask_diptych,
height=mask_diptych.size[1],
width=mask_diptych.size[0],
max_sequence_length=512,
generator=generator,
**pipe_prior_output,
).images[0]
width, height = edited_image.size
left = width // 2
right = width
top = 0
bottom = height
edited_image = edited_image.crop((left, top, right, bottom))
edited_image = np.array(edited_image)
edited_image = crop_back(edited_image, old_tar_image, np.array([H1, W1, H2, W2]), np.array(tar_box_yyxx_crop))
edited_image = Image.fromarray(edited_image)
if ref_mask_option != "Label to Mask":
return [edited_image]
else:
return [return_ref_mask, edited_image]
def update_ui(option):
if option == "Draw Mask":
return gr.update(visible=False), gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=False)
with gr.Blocks() as demo:
gr.Markdown("# Insert-Anything")
gr.Markdown("### Make sure to select the correct mask button!!")
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
base_image = gr.ImageEditor(label="Background Image", sources="upload", type="pil", brush=gr.Brush(colors=["#FFFFFF"],default_size = 30,color_mode = "fixed"),
layers = False,
interactive=True)
base_mask = gr.ImageEditor(label="Background Mask", sources="upload", type="pil", layers = False, brush=False, eraser=False)
with gr.Row():
base_mask_option = gr.Radio(["Draw Mask", "Upload with Mask"], label="Background Mask Input Option", value="Upload with Mask")
with gr.Row():
ref_image = gr.ImageEditor(label="Reference Image", sources="upload", type="pil", brush=gr.Brush(colors=["#FFFFFF"],default_size = 30,color_mode = "fixed"),
layers = False,
interactive=True)
ref_mask = gr.ImageEditor(label="Reference Mask", sources="upload", type="pil", layers = False, brush=False, eraser=False)
with gr.Row():
ref_mask_option = gr.Radio(["Draw Mask", "Upload with Mask", "Label to Mask"], label="Reference Mask Input Option", value="Upload with Mask")
with gr.Row():
text_prompt = gr.Textbox(label="Label")
with gr.Column(scale=1):
baseline_gallery = gr.Gallery(label='Output', show_label=True, elem_id="gallery", height=800, columns=1)
with gr.Accordion("Advanced Option", open=True):
seed = gr.Slider(label="Seed", minimum=-1, maximum=999999999, step=1, value=666)
gr.Markdown("### Guidelines")
gr.Markdown(" Users can try using different seeds. For example, seeds like 42 and 123456 may produce different effects.")
gr.Markdown(" Label to Mask means generating a mask by simply inputting a label.")
run_local_button = gr.Button(value="Run")
# #### example #####
num_examples = len(image_list)
for i in range(num_examples):
with gr.Row():
if i == 0:
gr.Examples([image_list[i]], inputs=[base_image], label="Examples - Background Image", examples_per_page=1)
gr.Examples([image_mask_list[i]], inputs=[base_mask], label="Examples - Background Mask", examples_per_page=1)
gr.Examples([ref_list[i]], inputs=[ref_image], label="Examples - Reference Object", examples_per_page=1)
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], label="Examples - Reference Mask", examples_per_page=1)
else:
gr.Examples([image_list[i]], inputs=[base_image], examples_per_page=1, label="")
gr.Examples([image_mask_list[i]], inputs=[base_mask], examples_per_page=1, label="")
gr.Examples([ref_list[i]], inputs=[ref_image], examples_per_page=1, label="")
gr.Examples([ref_mask_list[i]], inputs=[ref_mask], examples_per_page=1, label="")
if i < num_examples - 1:
gr.HTML("<hr>")
# #### example #####
run_local_button.click(fn=run_local,
inputs=[base_image, base_mask, ref_image, ref_mask, seed, base_mask_option, ref_mask_option, text_prompt],
outputs=[baseline_gallery]
)
demo.launch()