Spaces:
Sleeping
Sleeping
File size: 5,312 Bytes
f3c542d 76a84b9 f3c542d 76a84b9 f3c542d 76a84b9 f3c542d 76a84b9 f3c542d 76a84b9 f3c542d 6a39178 76a84b9 6a39178 f3c542d 76a84b9 f3c542d 6a39178 f3c542d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import os
import json
import datetime
import requests
from email.utils import parseaddr
import gradio as gr
import pandas as pd
import numpy as np
from datasets import load_dataset, VerificationMode
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
# InfoStrings
from scorer import question_scorer
from content import format_error, format_warning, format_log, TITLE, DATA_DATASET, INTRODUCTION_TEXT, SUBMISSION_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, model_hyperlink, SUBMIT_INTRODUCTION
TOKEN = os.environ.get("TOKEN", None)
OWNER="Online Mind2Web"
# api = HfApi()
YEAR_VERSION = "2024"
LOCAL_DEBUG = True
# Display the results
def get_dataframe_from_results(eval_path):
df = pd.read_csv(eval_path)
df = df.sort_values(by=["Average SR"], ascending=False)
for format_column in ['Easy', 'Medium', 'Hard', 'Average SR']:
df[format_column] = df[format_column].map('{:.1f}'.format)
# df["Average SR"] = df["Average SR"].map('{:.1f}'.format)
return df
# auto_df = pd.read_csv("./auto_Mind2Web-Online - Leaderboard_data.csv")
# human_df = pd.read_csv("./human_Mind2Web-Online - Leaderboard_data.csv")
auto_eval_dataframe_test = get_dataframe_from_results('./auto_Mind2Web-Online - Leaderboard_data.csv')
human_eval_dataframe_test = get_dataframe_from_results('./human_Mind2Web-Online - Leaderboard_data.csv')
# def restart_space():
# api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
TYPES = ["str", "str", "str", "str", "number", "number", "number", "number", "str"]
def refresh():
auto_eval_dataframe_test = get_dataframe_from_results('./auto_Mind2Web-Online - Leaderboard_data.csv')
human_eval_dataframe_test = get_dataframe_from_results('./human_Mind2Web-Online - Leaderboard_data.csv')
return auto_eval_dataframe_test, human_eval_dataframe_test
def upload_file(files):
file_paths = [file.name for file in files]
return file_paths
demo = gr.Blocks()
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
) #.style(show_copy_button=True)
with gr.Tab("Human Evaluation", elem_id="human-tab", id=1):
human_leaderboard_table_test = gr.components.Dataframe(
value=human_eval_dataframe_test, datatype=TYPES, interactive=False,
column_widths=["15%", "15%", "15%", "15%", "10%", "10%", "10%", "10%", "15%"]
)
with gr.Tab("Auto Evaluation", elem_id="auto-tab", id=2):
auto_leaderboard_table_test = gr.components.Dataframe(
value=auto_eval_dataframe_test, datatype=TYPES, interactive=False,
column_widths=["15%", "15%", "15%", "15%", "10%", "10%", "10%", "10%", "15%"]
)
with gr.Tab("Submission Guideline", elem_id="submit-tab", id=3):
with gr.Row():
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text")
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
auto_leaderboard_table_test,
human_leaderboard_table_test,
],
)
# gr.Markdown(DATA_DATASET, elem_classes="markdown-text")
# with gr.Row():
# # gr.Image(value="./figure/distribution_reference_length.png", label="Distribution of reference length", show_label=True, scale=0.4)
# gr.Image(value="./figure/Difficulty.png", label="Number of tasks by difficulty level", show_label=True, scale=0.4)
# with gr.Row():
# gr.Image(value="./figure/distribution_website.jpg", label="Distribution of websites.",show_label=True, scale=0.4)
# with gr.Row():
# gr.Image(value="./figure/popularity.jpg", label="Popularity of websites.", show_label=True, scale=0.4)
# with gr.Accordion("Submit a new agent for evaluation"):
# with gr.Row():
# gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
# with gr.Row():
# with gr.Column():
# model_name_textbox = gr.Textbox(label="Agent name")
# model_family_textbox = gr.Textbox(label="Model family")
# organisation = gr.Textbox(label="Organization")
# mail = gr.Textbox(label="Contact email (will be stored privately, & used if there is an issue with your submission)")
# file_output = gr.File()
# with gr.Row():
# gr.LoginButton()
# submit_button = gr.Button("Submit Eval")
# submission_result = gr.Markdown()
# submit_button.click(
# [
# level_of_test,
# model_name_textbox,
# model_family_textbox,
# system_prompt_textbox,
# url_textbox,
# file_output,
# organisation,
# mail
# ],
# submission_result,
# )
scheduler = BackgroundScheduler()
# scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True)
|