Spaces:
Sleeping
Sleeping
File size: 19,378 Bytes
a4ef31a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import copy
import json
import math
import re
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#import matplotlib.colors as mcolors
from matplotlib.patches import Patch
## the synthesis methods: Mass Spectroscopy, Radioactive Decay, Light Particles, Fission, Fusion, Spallation, Projectile Fragmentation, and Transfer/Deep Inelastic Scattering
colors_synthesisMethods = {
"MS" : (0, 0, 0),
"RD" : (0, 255, 255),
"LP" : (255, 165, 0),
"FI" : (255, 255, 0),
"FU" : (255, 0, 0),
"SP" : (0, 0, 255),
"PF" : (0, 127, 0),
"UN" : (127, 0, 127)
}
names_synthesisMethods = {
"MS" : "Mass Spectroscopy",
"RD" : "Radioactive Decay",
"LP" : "Light Particles",
"FI" : "Fission",
"FU" : "Fusion",
"SP" : "Spallation",
"PF" : "Projectile Fragmentation",
"UN" : "Transfer/Deep Inelastic"
}
colors_halflife = {
"l100ns": (247, 189, 222),
"100ns" : (255, 198, 165),
"1us" : (255, 231, 198),
"10us" : (255, 255, 156),
"100us" : (255, 255, 16),
"1ms" : (231, 247, 132),
"10ms" : (214, 239, 57),
"100ms" : (173, 222, 99),
"1s" : (82, 181, 82),
"10s" : (99, 189, 181),
"100s" : (99, 198, 222),
"1ks" : (0, 165, 198),
"10ks" : (8, 154, 148),
"100ks" : (0, 132, 165),
"10Ms" : (49, 82, 165),
"1e10s" : (41, 0, 107),
"1e15s" : (0, 0, 0),
"ST" : (0, 0, 0),
"SU" : (255, 148, 115),
"UN" : (224, 224, 224)
}
legends_halflife = {
"l100ns": "<100ns",
"100ns" : "100ns ~ 1us",
"1us" : "1us ~ 10us",
"10us" : "10us ~ 100us",
"100us" : "100us ~ 1ms",
"1ms" : "1ms ~ 10ms",
"10ms" : "10ms ~ 100ms",
"100ms" : "100ms ~ 1s",
"1s" : "1s ~ 10s",
"10s" : "10s ~ 100s",
"100s" : "100s ~ 1ks",
"1ks" : "1ks ~ 10ks",
"10ks" : "10ks ~ 100ks",
"100ks" : "100ks ~ 10Ms",
"10Ms" : "10Ms ~ 1e10s",
"1e10s" : "1e10s ~ 1e15s",
"1e15s" : ">1e15s",
"ST" : "STABLE",
"SU" : "SpecialUnit",
"UN" : "UNKNOWN"
}
colors_DecayModes = {
"P" : (255, 148, 115),
"N" : (156, 123, 189),
"A" : (255, 255, 66),
"B-" : (231, 140, 198),
"EC+B+" : (99, 198, 222),
"EC" : (0, 132, 165),
"SF" : (82, 181, 82),
"STABLE": (0, 0, 0),
"UNKNOWN":(224, 224, 224)
}
legends_DecayModes = {
"P" : "Proton",
"N" : "Neutron",
"A" : "Alaph",
"B-" : "Beta-",
"EC+B+" : "Beta+ ElectronCapture",
"EC" : "ElectronCapture",
"SF" : "SpontaneousFission",
"STABLE": "STABLE",
"UNKNOWN":"UNKNOWN"
}
nuclides_data_path = "data/nndc_nudat_data_export.json"
data_synthesisMethods_path = "data/Nuclides_synthesisMethods.json"
ElementsList_path = "data/ElementsList.json"
data_NuclidesClassifiedHalflife_path = "data/NuclidesClassifiedHalflife.json"
data_NuclidesClassifiedDecayModes_path = "data/NuclidesClassifiedDecayModes.json"
## 使用matplotlib绘图
## 入参为核素分类模式、所绘制核素区域、显示信息、有无图例
## area部分待完善
def nucildesChartPlotPLT(plot_mode=0, area=((0,0),(118,177)), text_mode=0, have_legend=True):
## 确定绘制核素区域
z_min, n_min = area[0]
z_max, n_max = area[1]
area_ysize = z_max - z_min + 1
area_xsize = n_max - n_min + 1
## 计算坐标时使用的单位为像素,而matplotlib的方法使用的单位为英寸,执行前须进行单位转换
nbwidth = 40
nbheight = 40
dpi = 100
## 根据显示信息确定绘图大小
if text_mode == 0:
resize_ratio = 5
ticks_step = 10
fontsize_label = 75
fontsize_ticks = 50
elif text_mode == 1:
resize_ratio = 5
ticks_step = 10
fontsize_label = 75
fontsize_ticks = 50
elif text_mode == 2:
resize_ratio = 10
ticks_step = 10
fontsize_label = 150
fontsize_ticks = 100
elif text_mode == 3:
resize_ratio = 10
ticks_step = 10
fontsize_label = 150
fontsize_ticks = 100
else:
resize_ratio = 1
ticks_step = 10
fontsize_label = 15
fontsize_ticks = 10
## 确定绘制范围
## 据质子数、中子数取整十
## 对于默认的(118,177),绘制范围为(130, 200)
x_min = math.floor(n_min / 10) * 10
x_max = math.ceil(n_max / 10) * 10
y_min = math.floor(z_min / 10) * 10
y_max = math.ceil(z_max / 10) * 10
fig = plt.figure(figsize=(10*resize_ratio*(x_max-x_min)/200, 6*resize_ratio*(y_max-y_min)/130), dpi=dpi)
ax = plt.gca()
## 核素区域绘制,默认白色背景
bg_color = (255, 255, 255)
color_data = np.full((area_ysize, area_xsize, 3), bg_color)
dx = nbwidth * resize_ratio
dy = nbheight * resize_ratio
xposg = np.arange(0, area_xsize*dx + dx, dx)
yposg = np.arange(0, area_ysize*dy + dy, dy)
xgrid = np.tile(xposg.reshape(1, -1), (area_ysize + 1, 1))
ygrid = np.tile(yposg.reshape(-1, 1), (1, area_xsize + 1))
xgridI = xgrid / dpi
ygridI = ygrid / dpi
## 根据核素分类模式上色
color_data = nucildesChartPlotPLTColor(copy.deepcopy(color_data), plot_mode, z_min, n_min ,z_max, n_max)
## 停用imshow转用pcolormesh以便控制各网格大小以及绘制边框
#ax.imshow(color_data, origin="lower", extent=[n_min-0.5, n_max+0.5, z_min-0.5, z_max+0.5])
ax.pcolormesh(xgridI, ygridI, color_data.astype(np.uint8), edgecolors="white", linewidth=4*resize_ratio/dpi)
## 绘制坐标轴
ax.set_xlim(((x_min-5)*dx/dpi, (x_max+20)*dx/dpi))
ax.set_ylim(((y_min-5)*dy/dpi, (y_max+10)*dy/dpi))
ax.set_xlabel("Neutron number", fontsize=fontsize_label, font='Times New Roman')
ax.set_ylabel("Proton number" , fontsize=fontsize_label, font='Times New Roman')
## 刻度绘制,同样取整十 (ticks_step = 10)
xticks = np.arange(x_min, x_max + 20 + ticks_step, ticks_step)
yticks = np.arange(y_min, y_max + 10 + ticks_step, ticks_step)
xtickspos = (xticks * dx + np.ones(len(xticks)) * 0.5 * dx) / dpi
ytickspos = (yticks * dy + np.ones(len(yticks)) * 0.5 * dy) / dpi
ax.set_xticks(xtickspos, xticks, fontsize=fontsize_ticks)
ax.set_yticks(ytickspos, yticks, fontsize=fontsize_ticks)
## 图例添加
## 默认大小匹配全图绘制
if have_legend:
legend_handles = legendHandlesGet(plot_mode)
if len(legend_handles) < 13:
fontsize_legend = fontsize_ticks
else:
fontsize_legend = fontsize_ticks * 0.6
plt.legend(handles=legend_handles, loc="lower right", fontsize=fontsize_legend)
## 添加显示信息
if not text_mode == 0:
color_weight = np.array((0.299, 0.587, 0.114))
text_data = nucildesChartPlotPLTText(plot_mode, z_min, n_min ,z_max, n_max)
## 显示元素名称
if text_mode == 1:
for tdata in text_data:
## 根据方块颜色选择文本颜色(黑或白)
base_color = color_data[tdata["pos"][1]][tdata["pos"][0]]
if np.dot(color_weight, base_color) > 128:
text_color = "black"
else:
text_color = "white"
txposi = (tdata["pos"][0] + 0.5) * dx / dpi
typosi = (tdata["pos"][1] + 0.5) * dy / dpi
ax.text(txposi, typosi, tdata["text01"], ha="center", va="center", color=text_color, fontsize=6)
## 显示核素名称
elif text_mode == 2:
for tdata in text_data:
## 根据方块颜色选择文本颜色(黑或白)
base_color = color_data[tdata["pos"][1]][tdata["pos"][0]]
if np.dot(color_weight, base_color) > 128:
text_color = "black"
else:
text_color = "white"
txposi = (tdata["pos"][0] + 0.5) * dx / dpi
typosi = (tdata["pos"][1] + 0.5) * dy / dpi
ax.text(txposi, typosi, tdata["text02"], ha="center", va="center", color=text_color, fontsize=6)
## 显示详细信息
elif text_mode == 3:
for tdata in text_data:
## 根据方块颜色选择文本颜色(黑或白)
base_color = color_data[tdata["pos"][1]][tdata["pos"][0]]
if np.dot(color_weight, base_color) > 128:
text_color = "black"
else:
text_color = "white"
txposi = (tdata["pos"][0] + 0.5) * dx / dpi
typosi = (tdata["pos"][1] + 0.85) * dy / dpi
text = tdata["text02"] + "\n" + tdata["text03"]
ax.text(txposi, typosi, text, ha="center", va="top", ma="center", color=text_color, fontsize=2.4)
#fig.savefig("test.svg", format="svg")
#fig.savefig("test.png", format="png")
#plt.show()
return fig
def nucildesChartPlotPLTColor(color_data, mode, z_min, n_min ,z_max, n_max):
## 据半衰期上色
## 默认使用基态数据
## nndc上的nudat3绘制时若基态无数据则会使用激发态的数据,此处与其不同 比如:137Pm、154Lu、161Ta 等
if mode == 0:
## 自NDfilter.nuclidesClassifyHalflife()
with open(data_NuclidesClassifiedHalflife_path, "r", encoding="utf8") as file:
data = json.load(file)
for row in data:
if (row["z"] >= z_min and row["z"] <= z_max) and (row["n"] >= n_min and row["n"] <= n_max):
ypos = row["z"] - z_min
xpos = row["n"] - n_min
if row["type"] in colors_halflife:
color_data[ypos][xpos] = np.array(colors_halflife[row["type"]])
## 据衰变模式上色
elif mode == 1:
## 自NDfilter.nuclidesClassifyDecayMode()
with open(data_NuclidesClassifiedDecayModes_path, "r", encoding="utf8") as file:
data = json.load(file)
for row in data:
if (row["z"] >= z_min and row["z"] <= z_max) and (row["n"] >= n_min and row["n"] <= n_max):
ypos = row["z"] - z_min
xpos = row["n"] - n_min
if row["type"] in colors_DecayModes:
color_data[ypos][xpos] = np.array(colors_DecayModes[row["type"]])
elif row["type"] in ("2B-", "β⁻"):
color_data[ypos][xpos] = np.array(colors_DecayModes["B-"])
elif row["type"] in ("2P", "3P"):
color_data[ypos][xpos] = np.array(colors_DecayModes["P"])
elif row["type"] in ("2N"):
color_data[ypos][xpos] = np.array(colors_DecayModes["N"])
else:
color_data[ypos][xpos] = np.array(colors_DecayModes["UNKNOWN"])
## 据合成方法上色
elif mode == 2:
with open(data_synthesisMethods_path, "r", encoding="utf8") as file:
data = json.load(file)
for row in data:
if (row["z"] >= z_min and row["z"] <= z_max) and (row["n"] >= n_min and row["n"] <= n_max):
ypos = row["z"] - z_min
xpos = row["n"] - n_min
if row["type"] in colors_synthesisMethods:
color_data[ypos][xpos] = np.array(colors_synthesisMethods[row["type"]])
return color_data
def legendHandlesGet(plot_mode):
handles = []
if plot_mode == 0:
for hl_tag in colors_halflife:
if hl_tag == "ST":
pass
elif hl_tag == "1e15s":
handles.append(Patch(facecolor=np.array(colors_halflife[hl_tag])/255., label=">1e15s or Stable"))
else:
handles.append(Patch(facecolor=np.array(colors_halflife[hl_tag])/255., label=legends_halflife[hl_tag]))
elif plot_mode == 1:
for decay_mode in colors_DecayModes:
handles.append(Patch(facecolor=np.array(colors_DecayModes[decay_mode])/255., label=legends_DecayModes[decay_mode]))
elif plot_mode == 2:
for synthesis_method in colors_synthesisMethods:
handles.append(Patch(facecolor=np.array(colors_synthesisMethods[synthesis_method])/255., label=names_synthesisMethods[synthesis_method]))
return handles
def nucildesChartPlotPLTText(plot_mode, z_min, n_min ,z_max, n_max):
with open(ElementsList_path, "r", encoding="utf8") as file:
elements_list = json.load(file)
text_data = []
if plot_mode == 0 or plot_mode == 1:
with open(nuclides_data_path, "r", encoding="utf8") as file:
data = json.load(file)
## 填充半衰期及衰变模式信息
## 对于衰变模式多于三种的,只显示其前三种(仿nndc)
## 对于过长的数字,将会对其进行截断
for nom, ndata in data.items():
if (ndata["z"] >= z_min and ndata["z"] <= z_max) and (ndata["n"] >= n_min and ndata["n"] <= n_max):
ypos = ndata["z"] - z_min
xpos = ndata["n"] - n_min
text01 = elements_list[str(ndata["z"])]
text02 = str(ndata["z"]+ndata["n"]) + text01
hlt = ""
dmst = []
if len(ndata["levels"]) == 0:
hlt = ""
dmst = []
else:
if not "halflife" in ndata["levels"][0]:
hlt = ""
elif not "value" in ndata["levels"][0]["halflife"]:
hlt = ""
elif ndata["levels"][0]["halflife"]["value"] == "STABLE":
hlt = "STABLE"
else:
hlv = ndata["levels"][0]["halflife"]["value"]
if hlv > 1e4:
hlt = f"{hlv:.2e}"
else:
hlt = str(hlv)
if ndata["levels"][0]["halflife"]["unit"] == "m":
hlt = hlt + " min"
else:
hlt = hlt + " " + ndata["levels"][0]["halflife"]["unit"]
if not "decayModes" in ndata["levels"][0]:
dmst = []
else:
decay_modes = ndata["levels"][0]["decayModes"]["observed"] + ndata["levels"][0]["decayModes"]["predicted"]
if len(decay_modes) == 0:
dmst = []
else:
## 据分支比排序
dms1 = []
dms2 = []
dmsd = {}
dmsd1 = []
for decay_mode in decay_modes:
if not "value" in decay_mode:
dms2.append(decay_mode)
else:
dmsd[decay_mode["mode"]] = decay_mode
dmsd1.append((decay_mode["value"], decay_mode["mode"]))
dmsdf = pd.DataFrame(dmsd1, columns=["value", "mode"])
dmsdf.sort_values(by="value", ascending=False, inplace=True)
for mode in dmsdf["mode"]:
dms1.append(dmsd[mode])
dms = dms1 + dms2
###
for decay_mode in dms:
text = decay_mode["mode"]
if not "value" in decay_mode:
text = text + " ?"
else:
dmv = decay_mode["value"]
dmt = str(dmv)
if len(dmt) > 7:
if re.search(rf"([eE])", dmt) == None:
if dmv > 1e-3:
dmt = dmt[:7]
else:
match00 = re.fullmatch(rf"(0+)(\.)(0+)([1-9]+)", dmt)
if not match00 == None:
ne = match00.group(4)
if len(ne) < 3:
dmt = f"{dmv:e}"
else:
dmt = f"{dmv:.2e}"
if decay_mode["uncertainty"]["type"] == "limit":
if decay_mode["uncertainty"]["limitType"] == "lower":
if decay_mode["uncertainty"]["isInclusive"] == True:
text = text + " ≥ " + dmt + "%"
else:
text = text + " > " + dmt + "%"
elif decay_mode["uncertainty"]["limitType"] == "upper":
if decay_mode["uncertainty"]["isInclusive"] == True:
text = text + " ≤ " + dmt + "%"
else:
text = text + " < " + dmt + "%"
else:
text = text + " = " + dmt + "%"
dmst.append(text)
text03 = hlt + "\n"
if not len(dmst) > 0:
pass
elif len(dmst) <= 3:
for dmt in dmst:
text03 = text03 + "\n" + dmt
else:
for idx in range(0, 3):
text03 = text03 + "\n" + dmst[idx]
text_data.append({"pos":(xpos, ypos), "text01":text01, "text02":text02, "text03":text03})
## 填充合成方法信息
elif plot_mode == 2:
with open(data_synthesisMethods_path, "r", encoding="utf8") as file:
data = json.load(file)
for row in data:
if (row["z"] >= z_min and row["z"] <= z_max) and (row["n"] >= n_min and row["n"] <= n_max):
ypos = row["z"] - z_min
xpos = row["n"] - n_min
text01 = elements_list[str(row["z"])]
text02 = str(row["z"]+row["n"]) + text01
text03 = row["type"]
text_data.append({"pos":(xpos, ypos), "text01":text01, "text02":text02, "text03":text03})
return text_data
## test
|