File size: 1,251 Bytes
8c55385
 
 
 
 
61a06ad
 
8c55385
 
 
 
 
 
 
fc85ecf
61e74de
8c55385
61e74de
8c55385
 
 
61e74de
 
8c55385
 
 
d1dce88
8c55385
 
51ca249
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
import datasets
import gradio as gr

#model = SentenceTransformer('clip-ViT-B-16')
model = SentenceTransformer('clip-ViT-B-32')
dataset = datasets.load_dataset('brendenc/celeb-identities')

def predict(im1, im2):
  
  embeddings = model.encode([im1, im2])
  sim = cosine_similarity(embeddings)
  sim = sim[0, 1]
  if sim > 0.82:
    return sim, "SAME PERSON, AUTHORIZE PAYMENT"
  else:
    return sim, "DIFFERENT PEOPLE, DON'T AUTHORIZE PAYMENT"


interface = gr.Interface(fn=predict, 
                         inputs= [gr.Image(value = dataset['train']['image'][10], type="pil", source="webcam"), 
                                  gr.Image(value = dataset['train']['image'][17], type="pil", source="webcam")], 
                         outputs= [gr.Number(label="Similarity"),
                                   gr.Textbox(label="Message")],
                         title = 'Face ID',
                         description = 'This app uses face biometrics and a similarity to function as a Face ID application.The similarity score ranges from -1 to 1.'
                         )

interface.launch(debug=True)
#interface.launch(share=True)