# PortraitBlurrer.py import cv2 import numpy as np from PIL import Image class PortraitBlurrer: def __init__(self, max_blur=31, depth_threshold=120, feather_strength=3, sharpen_strength=1): self.max_blur = max_blur # Ensure max_blur is odd and positive if self.max_blur % 2 == 0: self.max_blur += 1 if self.max_blur <= 0: self.max_blur = 3 # Default odd positive self.depth_threshold = depth_threshold self.feather_strength = feather_strength self.sharpen_strength = sharpen_strength def refine_depth_map(self, depth_map): # Apply a bilateral filter to smooth depth while preserving edges refined_depth = cv2.bilateralFilter(depth_map, 9, 75, 75) return refined_depth def create_subject_mask(self, depth_map): _, mask = cv2.threshold(depth_map, self.depth_threshold, 255, cv2.THRESH_BINARY) kernel = np.ones((5, 5), np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) ksize = self.feather_strength if ksize % 2 == 0: ksize += 1 if ksize <= 0: ksize = 3 mask = cv2.GaussianBlur(mask, (ksize, ksize), 0) return mask.astype(np.float32) / 255.0 def sharpen_image(self, image): # Ensure sharpen_strength is not zero to avoid division issues later if needed strength = max(0.1, self.sharpen_strength) # Prevent zero strength # Simple sharpening kernel kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) # Apply the kernel - adjust strength application if needed # A common way is to blend the sharpened with original based on strength sharpened = cv2.filter2D(image, -1, kernel) # Blend sharpened and original based on strength # strength=1 means mostly sharpened, strength close to 0 means mostly original if strength != 1.0: # Avoid unnecessary work if strength is 1 blended = cv2.addWeighted(image, 1.0 - (strength - 1.0) if strength > 1.0 else 1.0 , sharpened, strength if strength <= 1.0 else 1.0, 0) # Basic clipping if values go out of range due to sharpening return np.clip(blended, 0, 255).astype(np.uint8) else: # Basic clipping if values go out of range due to sharpening return np.clip(sharpened, 0, 255).astype(np.uint8) def apply_blur(self, original_bgr, depth_map_array): # Resize depth map to match image dimensions depth_resized = cv2.resize(depth_map_array, (original_bgr.shape[1], original_bgr.shape[0]), interpolation=cv2.INTER_LINEAR) refined_depth = self.refine_depth_map(depth_resized) mask = self.create_subject_mask(refined_depth) # Float mask [0, 1] blurred = cv2.GaussianBlur(original_bgr, (self.max_blur, self.max_blur), 0) # Only sharpen if strength is significant if self.sharpen_strength > 0.05: # Threshold to avoid unnecessary computation sharpened_original = self.sharpen_image(original_bgr) # Blend sharpened subject with original based on mask foreground = sharpened_original * mask[:, :, np.newaxis] + \ original_bgr * (1 - mask[:, :, np.newaxis]) else: foreground = original_bgr # Use original if no sharpening # Blend the (potentially sharpened) foreground with the blurred background background = blurred * (1 - mask[:, :, np.newaxis]) # Combine the foreground (where mask is 1) and background (where mask is 0) # Note: Foreground already contains the original where it wasn't sharpened # A potentially better blend: result = original_bgr * mask[:, :, np.newaxis] + blurred * (1 - mask[:, :, np.newaxis]) if self.sharpen_strength > 0.05: sharpened_subject_only = self.sharpen_image(original_bgr) # Apply sharpening only where the mask is high result = sharpened_subject_only * mask[:, :, np.newaxis] + result * (1 - mask[:, :, np.newaxis]) # Ensure result is uint8 final_result = np.clip(result, 0, 255).astype(np.uint8) # Return the final blurred image as a NumPy array (BGR) # Also return the refined depth map and the mask for potential display return final_result, refined_depth, (mask * 255).astype(np.uint8) def process_image(self, original_bgr_np, depth_image_pil): depth_map_array = np.array(depth_image_pil) if len(depth_map_array.shape) > 2: # Assuming input PIL depth map might be RGB, convert to grayscale depth_map_array = cv2.cvtColor(depth_map_array, cv2.COLOR_RGB2GRAY) elif len(depth_map_array.shape) == 2: # Already grayscale, ensure it's uint8 if necessary (though pipeline likely outputs it correctly) if depth_map_array.dtype != np.uint8: # Normalize if it's float or other types before potential processing if depth_map_array.max() > 1.0: # Basic check if it might be 0-255 depth_map_array = depth_map_array.astype(np.uint8) else: # Assume 0-1 float, scale to 0-255 depth_map_array = (depth_map_array * 255).astype(np.uint8) # apply_blur now returns the result, depth map, and mask blurred_image_np, refined_depth_np, mask_np = self.apply_blur(original_bgr_np, depth_map_array) # Return the blurred image, the refined depth map (grayscale), and the mask (grayscale) return blurred_image_np, refined_depth_np, mask_np