RAG_FASTAPI / app.py
VishnuRamDebyez's picture
Update app.py
e12affb verified
from fastapi import FastAPI, HTTPException
import os
from typing import List, Dict
from dotenv import load_dotenv
import logging
from pathlib import Path
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Qdrant as QdrantVectorStore
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_groq import ChatGroq
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from qdrant_client.models import PointIdsList
from langgraph.graph import MessagesState, StateGraph
from langchain_core.messages import SystemMessage, HumanMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import END
from langgraph.prebuilt import tools_condition
from langgraph.checkpoint.memory import MemorySaver
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
load_dotenv()
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
if not GOOGLE_API_KEY or not GROQ_API_KEY:
raise ValueError("API keys not set in environment variables")
app = FastAPI()
class QASystem:
def __init__(self):
self.vector_store = None
self.graph = None
self.memory = None
self.embeddings = None
self.client = None
self.pdf_dir = "pdfss"
def load_pdf_documents(self):
documents = []
pdf_dir = Path(self.pdf_dir)
if not pdf_dir.exists():
raise FileNotFoundError(f"PDF directory not found: {self.pdf_dir}")
for pdf_path in pdf_dir.glob("*.pdf"):
try:
loader = PyPDFLoader(str(pdf_path))
documents.extend(loader.load())
logger.info(f"Loaded PDF: {pdf_path}")
except Exception as e:
logger.error(f"Error loading PDF {pdf_path}: {str(e)}")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=100
)
split_docs = text_splitter.split_documents(documents)
logger.info(f"Split documents into {len(split_docs)} chunks")
return split_docs
def initialize_system(self):
try:
self.client = QdrantClient(":memory:")
try:
self.client.get_collection("pdf_data")
except Exception:
self.client.create_collection(
collection_name="pdf_data",
vectors_config=VectorParams(size=768, distance=Distance.COSINE),
)
logger.info("Created new collection: pdf_data")
self.embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key=GOOGLE_API_KEY
)
self.vector_store = QdrantVectorStore(
client=self.client,
collection_name="pdf_data",
embeddings=self.embeddings,
)
documents = self.load_pdf_documents()
if documents:
try:
points = self.client.scroll(collection_name="pdf_data", limit=100)[0]
if points:
self.client.delete(
collection_name="pdf_data",
points_selector=PointIdsList(
points=[p.id for p in points]
)
)
except Exception as e:
logger.error(f"Error clearing vectors: {str(e)}")
self.vector_store.add_documents(documents)
logger.info(f"Added {len(documents)} documents to vector store")
llm = ChatGroq(
model="llama3-8b-8192",
api_key=GROQ_API_KEY,
temperature=0.7
)
graph_builder = StateGraph(MessagesState)
def query_or_respond(state: MessagesState):
retrieved_docs = [m for m in state["messages"] if m.type == "tool"]
if retrieved_docs:
context = ' '.join(m.content for m in retrieved_docs)
else:
context = "mountain bicycle documentation knowledge"
system_prompt = (
"You are an AI assistant embedded within the Interactive Electronic Technical Manual (IETM) for Mountain Cycles.. "
"Always provide accurate responses with references to provided data. "
"If the user query is not technical-specific, still respond from a IETM perspective."
f"\n\nContext:\n{context}"
)
messages = [SystemMessage(content=system_prompt)] + state["messages"]
logger.info(f"Sending to LLM: {[m.content for m in messages]}") # Debugging log
response = llm.invoke(messages)
return {"messages": [response]}
def generate(state: MessagesState):
retrieved_docs = [m for m in reversed(state["messages"]) if m.type == "tool"][::-1]
context = ' '.join(m.content for m in retrieved_docs) if retrieved_docs else "mountain bicycle documentation knowledge"
system_prompt = (
"You are an AI assistant embedded within the Interactive Electronic Technical Manual (IETM) for Mountain Cycles. "
"Your responses MUST be accurate, concise (5 sentences max)."
f"\n\nContext:\n{context}"
)
messages = [SystemMessage(content=system_prompt)] + state["messages"]
logger.info(f"Sending to LLM: {[m.content for m in messages]}") # Debugging log
response = llm.invoke(messages)
return {"messages": [response]}
graph_builder.add_node("query_or_respond", query_or_respond)
graph_builder.add_node("generate", generate)
graph_builder.set_entry_point("query_or_respond")
graph_builder.add_edge("query_or_respond", "generate")
graph_builder.add_edge("generate", END)
self.memory = MemorySaver()
self.graph = graph_builder.compile(checkpointer=self.memory)
return True
except Exception as e:
logger.error(f"System initialization error: {str(e)}")
return False
def process_query(self, query: str) -> List[Dict[str, str]]:
try:
responses = []
for step in self.graph.stream(
{"messages": [HumanMessage(content=query)]},
stream_mode="values",
config={"configurable": {"thread_id": "abc123"}}
):
if step["messages"]:
responses.append({
'content': step["messages"][-1].content,
'type': step["messages"][-1].type
})
return responses
except Exception as e:
logger.error(f"Query processing error: {str(e)}")
return [{'content': f"Query processing error: {str(e)}", 'type': 'error'}]
qa_system = QASystem()
if qa_system.initialize_system():
logger.info("QA System Initialized Successfully")
else:
raise RuntimeError("Failed to initialize QA System")
@app.post("/query")
async def query_api(query: str):
responses = qa_system.process_query(query)
return {"responses": responses}