import os # os.environ['ATTN_BACKEND'] = 'xformers' # Can be 'flash-attn' or 'xformers', default is 'flash-attn' os.environ['SPCONV_ALGO'] = 'native' # Can be 'native' or 'auto', default is 'auto'. # 'auto' is faster but will do benchmarking at the beginning. # Recommended to set to 'native' if run only once. import numpy as np import imageio from PIL import Image from trellis.pipelines import TrellisImageTo3DPipeline from trellis.utils import render_utils # Load a pipeline from a model folder or a Hugging Face model hub. pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") pipeline.cuda() # Load an image images = [ Image.open("assets/example_multi_image/character_1.png"), Image.open("assets/example_multi_image/character_2.png"), Image.open("assets/example_multi_image/character_3.png"), ] # Run the pipeline outputs = pipeline.run_multi_image( images, seed=1, # Optional parameters sparse_structure_sampler_params={ "steps": 12, "cfg_strength": 7.5, }, slat_sampler_params={ "steps": 12, "cfg_strength": 3, }, ) # outputs is a dictionary containing generated 3D assets in different formats: # - outputs['gaussian']: a list of 3D Gaussians # - outputs['radiance_field']: a list of radiance fields # - outputs['mesh']: a list of meshes video_gs = render_utils.render_video(outputs['gaussian'][0])['color'] video_mesh = render_utils.render_video(outputs['mesh'][0])['normal'] video = [np.concatenate([frame_gs, frame_mesh], axis=1) for frame_gs, frame_mesh in zip(video_gs, video_mesh)] imageio.mimsave("sample_multi.mp4", video, fps=30)