|
import os
|
|
import json
|
|
import argparse
|
|
import numpy as np
|
|
import pandas as pd
|
|
from tqdm import tqdm
|
|
from easydict import EasyDict as edict
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--output_dir', type=str, required=True,
|
|
help='Directory to save the metadata')
|
|
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None,
|
|
help='Filter objects with aesthetic score lower than this value')
|
|
parser.add_argument('--model', type=str, default='dinov2_vitl14_reg_slat_enc_swin8_B_64l8_fp16',
|
|
help='Latent model to use')
|
|
parser.add_argument('--num_samples', type=int, default=50000,
|
|
help='Number of samples to use for calculating stats')
|
|
opt = parser.parse_args()
|
|
opt = edict(vars(opt))
|
|
|
|
|
|
if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')):
|
|
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv'))
|
|
else:
|
|
raise ValueError('metadata.csv not found')
|
|
if opt.filter_low_aesthetic_score is not None:
|
|
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score]
|
|
metadata = metadata[metadata[f'latent_{opt.model}'] == True]
|
|
sha256s = metadata['sha256'].values
|
|
sha256s = np.random.choice(sha256s, min(opt.num_samples, len(sha256s)), replace=False)
|
|
|
|
|
|
means = []
|
|
mean2s = []
|
|
with ThreadPoolExecutor(max_workers=16) as executor, \
|
|
tqdm(total=len(sha256s), desc="Extracting features") as pbar:
|
|
def worker(sha256):
|
|
try:
|
|
feats = np.load(os.path.join(opt.output_dir, 'latents', opt.model, f'{sha256}.npz'))
|
|
feats = feats['feats']
|
|
means.append(feats.mean(axis=0))
|
|
mean2s.append((feats ** 2).mean(axis=0))
|
|
pbar.update()
|
|
except Exception as e:
|
|
print(f"Error extracting features for {sha256}: {e}")
|
|
pbar.update()
|
|
|
|
executor.map(worker, sha256s)
|
|
executor.shutdown(wait=True)
|
|
|
|
mean = np.array(means).mean(axis=0)
|
|
mean2 = np.array(mean2s).mean(axis=0)
|
|
std = np.sqrt(mean2 - mean ** 2)
|
|
|
|
print('mean:', mean)
|
|
print('std:', std)
|
|
|
|
with open(os.path.join(opt.output_dir, 'latents', opt.model, 'stats.json'), 'w') as f:
|
|
json.dump({
|
|
'mean': mean.tolist(),
|
|
'std': std.tolist(),
|
|
}, f, indent=4)
|
|
|