|
import os
|
|
import sys
|
|
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
|
|
import copy
|
|
import json
|
|
import argparse
|
|
import torch
|
|
import numpy as np
|
|
import pandas as pd
|
|
from tqdm import tqdm
|
|
from easydict import EasyDict as edict
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from queue import Queue
|
|
|
|
import trellis.models as models
|
|
import trellis.modules.sparse as sp
|
|
|
|
|
|
torch.set_grad_enabled(False)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--output_dir', type=str, required=True,
|
|
help='Directory to save the metadata')
|
|
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None,
|
|
help='Filter objects with aesthetic score lower than this value')
|
|
parser.add_argument('--feat_model', type=str, default='dinov2_vitl14_reg',
|
|
help='Feature model')
|
|
parser.add_argument('--enc_pretrained', type=str, default='JeffreyXiang/TRELLIS-image-large/ckpts/slat_enc_swin8_B_64l8_fp16',
|
|
help='Pretrained encoder model')
|
|
parser.add_argument('--model_root', type=str, default='results',
|
|
help='Root directory of models')
|
|
parser.add_argument('--enc_model', type=str, default=None,
|
|
help='Encoder model. if specified, use this model instead of pretrained model')
|
|
parser.add_argument('--ckpt', type=str, default=None,
|
|
help='Checkpoint to load')
|
|
parser.add_argument('--instances', type=str, default=None,
|
|
help='Instances to process')
|
|
parser.add_argument('--rank', type=int, default=0)
|
|
parser.add_argument('--world_size', type=int, default=1)
|
|
opt = parser.parse_args()
|
|
opt = edict(vars(opt))
|
|
|
|
if opt.enc_model is None:
|
|
latent_name = f'{opt.feat_model}_{opt.enc_pretrained.split("/")[-1]}'
|
|
encoder = models.from_pretrained(opt.enc_pretrained).eval().cuda()
|
|
else:
|
|
latent_name = f'{opt.feat_model}_{opt.enc_model}_{opt.ckpt}'
|
|
cfg = edict(json.load(open(os.path.join(opt.model_root, opt.enc_model, 'config.json'), 'r')))
|
|
encoder = getattr(models, cfg.models.encoder.name)(**cfg.models.encoder.args).cuda()
|
|
ckpt_path = os.path.join(opt.model_root, opt.enc_model, 'ckpts', f'encoder_{opt.ckpt}.pt')
|
|
encoder.load_state_dict(torch.load(ckpt_path), strict=False)
|
|
encoder.eval()
|
|
print(f'Loaded model from {ckpt_path}')
|
|
|
|
os.makedirs(os.path.join(opt.output_dir, 'latents', latent_name), exist_ok=True)
|
|
|
|
|
|
if os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')):
|
|
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv'))
|
|
else:
|
|
raise ValueError('metadata.csv not found')
|
|
if opt.instances is not None:
|
|
with open(opt.instances, 'r') as f:
|
|
sha256s = [line.strip() for line in f]
|
|
metadata = metadata[metadata['sha256'].isin(sha256s)]
|
|
else:
|
|
if opt.filter_low_aesthetic_score is not None:
|
|
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score]
|
|
metadata = metadata[metadata[f'feature_{opt.feat_model}'] == True]
|
|
if f'latent_{latent_name}' in metadata.columns:
|
|
metadata = metadata[metadata[f'latent_{latent_name}'] == False]
|
|
|
|
start = len(metadata) * opt.rank // opt.world_size
|
|
end = len(metadata) * (opt.rank + 1) // opt.world_size
|
|
metadata = metadata[start:end]
|
|
records = []
|
|
|
|
|
|
sha256s = list(metadata['sha256'].values)
|
|
for sha256 in copy.copy(sha256s):
|
|
if os.path.exists(os.path.join(opt.output_dir, 'latents', latent_name, f'{sha256}.npz')):
|
|
records.append({'sha256': sha256, f'latent_{latent_name}': True})
|
|
sha256s.remove(sha256)
|
|
|
|
|
|
load_queue = Queue(maxsize=4)
|
|
try:
|
|
with ThreadPoolExecutor(max_workers=32) as loader_executor, \
|
|
ThreadPoolExecutor(max_workers=32) as saver_executor:
|
|
def loader(sha256):
|
|
try:
|
|
feats = np.load(os.path.join(opt.output_dir, 'features', opt.feat_model, f'{sha256}.npz'))
|
|
load_queue.put((sha256, feats))
|
|
except Exception as e:
|
|
print(f"Error loading features for {sha256}: {e}")
|
|
loader_executor.map(loader, sha256s)
|
|
|
|
def saver(sha256, pack):
|
|
save_path = os.path.join(opt.output_dir, 'latents', latent_name, f'{sha256}.npz')
|
|
np.savez_compressed(save_path, **pack)
|
|
records.append({'sha256': sha256, f'latent_{latent_name}': True})
|
|
|
|
for _ in tqdm(range(len(sha256s)), desc="Extracting latents"):
|
|
sha256, feats = load_queue.get()
|
|
feats = sp.SparseTensor(
|
|
feats = torch.from_numpy(feats['patchtokens']).float(),
|
|
coords = torch.cat([
|
|
torch.zeros(feats['patchtokens'].shape[0], 1).int(),
|
|
torch.from_numpy(feats['indices']).int(),
|
|
], dim=1),
|
|
).cuda()
|
|
latent = encoder(feats, sample_posterior=False)
|
|
assert torch.isfinite(latent.feats).all(), "Non-finite latent"
|
|
pack = {
|
|
'feats': latent.feats.cpu().numpy().astype(np.float32),
|
|
'coords': latent.coords[:, 1:].cpu().numpy().astype(np.uint8),
|
|
}
|
|
saver_executor.submit(saver, sha256, pack)
|
|
|
|
saver_executor.shutdown(wait=True)
|
|
except:
|
|
print("Error happened during processing.")
|
|
|
|
records = pd.DataFrame.from_records(records)
|
|
records.to_csv(os.path.join(opt.output_dir, f'latent_{latent_name}_{opt.rank}.csv'), index=False)
|
|
|