|
import os
|
|
import copy
|
|
import sys
|
|
import importlib
|
|
import argparse
|
|
import pandas as pd
|
|
from easydict import EasyDict as edict
|
|
|
|
if __name__ == '__main__':
|
|
dataset_utils = importlib.import_module(f'datasets.{sys.argv[1]}')
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--output_dir', type=str, required=True,
|
|
help='Directory to save the metadata')
|
|
parser.add_argument('--filter_low_aesthetic_score', type=float, default=None,
|
|
help='Filter objects with aesthetic score lower than this value')
|
|
parser.add_argument('--instances', type=str, default=None,
|
|
help='Instances to process')
|
|
dataset_utils.add_args(parser)
|
|
parser.add_argument('--rank', type=int, default=0)
|
|
parser.add_argument('--world_size', type=int, default=1)
|
|
opt = parser.parse_args(sys.argv[2:])
|
|
opt = edict(vars(opt))
|
|
|
|
os.makedirs(opt.output_dir, exist_ok=True)
|
|
|
|
|
|
if not os.path.exists(os.path.join(opt.output_dir, 'metadata.csv')):
|
|
raise ValueError('metadata.csv not found')
|
|
metadata = pd.read_csv(os.path.join(opt.output_dir, 'metadata.csv'))
|
|
if opt.instances is None:
|
|
if opt.filter_low_aesthetic_score is not None:
|
|
metadata = metadata[metadata['aesthetic_score'] >= opt.filter_low_aesthetic_score]
|
|
if 'local_path' in metadata.columns:
|
|
metadata = metadata[metadata['local_path'].isna()]
|
|
else:
|
|
if os.path.exists(opt.instances):
|
|
with open(opt.instances, 'r') as f:
|
|
instances = f.read().splitlines()
|
|
else:
|
|
instances = opt.instances.split(',')
|
|
metadata = metadata[metadata['sha256'].isin(instances)]
|
|
|
|
start = len(metadata) * opt.rank // opt.world_size
|
|
end = len(metadata) * (opt.rank + 1) // opt.world_size
|
|
metadata = metadata[start:end]
|
|
|
|
print(f'Processing {len(metadata)} objects...')
|
|
|
|
|
|
downloaded = dataset_utils.download(metadata, **opt)
|
|
downloaded.to_csv(os.path.join(opt.output_dir, f'downloaded_{opt.rank}.csv'), index=False)
|
|
|