Commented out Custom QDrant retriever
Browse files
app.py
CHANGED
@@ -61,23 +61,23 @@ hf_embeddings = HuggingFaceEndpointEmbeddings(
|
|
61 |
)
|
62 |
|
63 |
# Step 6: Create a custom retriever
|
64 |
-
class CustomQdrantRetriever:
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
|
82 |
FAISS_VECTOR_STORE = "FAISS"
|
83 |
QDRANT_VECTOR_STORE = "QDRANT"
|
|
|
61 |
)
|
62 |
|
63 |
# Step 6: Create a custom retriever
|
64 |
+
# class CustomQdrantRetriever:
|
65 |
+
# def __init__(self, vectorstore, top_k=5):
|
66 |
+
# self.vectorstore = vectorstore
|
67 |
+
# self.top_k = top_k
|
68 |
|
69 |
+
# def __call__(self, query):
|
70 |
+
# embedded_query = self.vectorstore.embedding_function(query)
|
71 |
+
# search_result = vectorstore.search(
|
72 |
+
# # collection_name=collection_name,
|
73 |
+
# query_vector=embedded_query,
|
74 |
+
# limit=self.top_k
|
75 |
+
# )
|
76 |
+
# documents = [
|
77 |
+
# {"page_content": hit.payload["text"], "metadata": hit.payload}
|
78 |
+
# for hit in search_result
|
79 |
+
# ]
|
80 |
+
# return documents
|
81 |
|
82 |
FAISS_VECTOR_STORE = "FAISS"
|
83 |
QDRANT_VECTOR_STORE = "QDRANT"
|