from collections import defaultdict import glob import os import json import numpy as np from PIL import Image import cv2 import torch import decord import pickle as pkl def scale_intrs(intrs, ratio_x, ratio_y): if len(intrs.shape) >= 3: intrs[:, 0] = intrs[:, 0] * ratio_x intrs[:, 1] = intrs[:, 1] * ratio_y else: intrs[0] = intrs[0] * ratio_x intrs[1] = intrs[1] * ratio_y return intrs def calc_new_tgt_size(cur_hw, tgt_size, multiply): ratio = tgt_size / min(cur_hw) tgt_size = int(ratio * cur_hw[0]), int(ratio * cur_hw[1]) tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1] return tgt_size, ratio_y, ratio_x def calc_new_tgt_size_by_aspect(cur_hw, aspect_standard, tgt_size, multiply): assert abs(cur_hw[0] / cur_hw[1] - aspect_standard) < 0.03 tgt_size = tgt_size * aspect_standard, tgt_size tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1] return tgt_size, ratio_y, ratio_x def img_center_padding(img_np, pad_ratio): ori_w, ori_h = img_np.shape[:2] w = round((1 + pad_ratio) * ori_w) h = round((1 + pad_ratio) * ori_h) if len(img_np.shape) > 2: img_pad_np = np.zeros((w, h, img_np.shape[2]), dtype=np.uint8) else: img_pad_np = np.zeros((w, h), dtype=np.uint8) offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2 img_pad_np[offset_h: offset_h + img_np.shape[0]:, offset_w: offset_w + img_np.shape[1]] = img_np return img_pad_np def resize_image_keepaspect_np(img, max_tgt_size): """ similar to ImageOps.contain(img_pil, (img_size, img_size)) # keep the same aspect ratio """ h, w = img.shape[:2] ratio = max_tgt_size / max(h, w) new_h, new_w = round(h * ratio), round(w * ratio) return cv2.resize(img, dsize=(new_w, new_h), interpolation=cv2.INTER_AREA) def center_crop_according_to_mask(img, mask, aspect_standard, enlarge_ratio): """ img: [H, W, 3] mask: [H, W] """ if len(mask.shape) > 2: mask = mask[:, :, 0] ys, xs = np.where(mask > 0) if len(xs) == 0 or len(ys) == 0: raise Exception("empty mask") x_min = np.min(xs) x_max = np.max(xs) y_min = np.min(ys) y_max = np.max(ys) center_x, center_y = img.shape[1]//2, img.shape[0]//2 half_w = max(abs(center_x - x_min), abs(center_x - x_max)) half_h = max(abs(center_y - y_min), abs(center_y - y_max)) half_w_raw = half_w half_h_raw = half_h aspect = half_h / half_w if aspect >= aspect_standard: half_w = round(half_h / aspect_standard) else: half_h = round(half_w * aspect_standard) if half_h > center_y: half_w = round(half_h_raw / aspect_standard) half_h = half_h_raw if half_w > center_x: half_h = round(half_w_raw * aspect_standard) half_w = half_w_raw if abs(enlarge_ratio[0] - 1) > 0.01 or abs(enlarge_ratio[1] - 1) > 0.01: enlarge_ratio_min, enlarge_ratio_max = enlarge_ratio enlarge_ratio_max_real = min(center_y / half_h, center_x / half_w) enlarge_ratio_max = min(enlarge_ratio_max_real, enlarge_ratio_max) enlarge_ratio_min = min(enlarge_ratio_max_real, enlarge_ratio_min) enlarge_ratio_cur = np.random.rand() * (enlarge_ratio_max - enlarge_ratio_min) + enlarge_ratio_min half_h, half_w = round(enlarge_ratio_cur * half_h), round(enlarge_ratio_cur * half_w) assert half_h <= center_y assert half_w <= center_x assert abs(half_h / half_w - aspect_standard) < 0.03 offset_x = center_x - half_w offset_y = center_y - half_h new_img = img[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w] new_mask = mask[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w] return new_img, new_mask, offset_x, offset_y def preprocess_image(rgb_path, mask_path, intr, pad_ratio, bg_color, max_tgt_size, aspect_standard, enlarge_ratio, render_tgt_size, multiply, need_mask=True, get_shape_param=False): rgb = np.array(Image.open(rgb_path)) rgb_raw = rgb.copy() if pad_ratio > 0: rgb = img_center_padding(rgb, pad_ratio) rgb = rgb / 255.0 if need_mask: if rgb.shape[2] < 4: if mask_path is not None: # mask = np.array(Image.open(mask_path)) mask = (np.array(Image.open(mask_path)) > 180) * 255 else: from rembg import remove mask = remove(rgb_raw[:, :, (2, 1, 0)])[:, :, -1] # np require [bgr] print("rmbg mask: ", mask.min(), mask.max(), mask.shape) if pad_ratio > 0: mask = img_center_padding(mask, pad_ratio) mask = mask / 255.0 else: # rgb: [H, W, 4] assert rgb.shape[2] == 4 mask = rgb[:, :, 3] # [H, W] else: # just placeholder mask = np.ones_like(rgb[:, :, 0]) if len(mask.shape) > 2: mask = mask[:, :, 0] # mask = (mask > 0.5).astype(np.float32) mask = mask.astype(np.float32) if (rgb.shape[0] == rgb.shape[1]) and (rgb.shape[0]==512): rgb = cv2.resize(rgb, (mask.shape[1], mask.shape[0]), interpolation=cv2.INTER_AREA) rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None]) # # resize to specific size require by preprocessor of flame-estimator. # rgb = resize_image_keepaspect_np(rgb, max_tgt_size) # mask = resize_image_keepaspect_np(mask, max_tgt_size) # crop image to enlarge human area. rgb, mask, offset_x, offset_y = center_crop_according_to_mask(rgb, mask, aspect_standard, enlarge_ratio) if intr is not None: intr[0, 2] -= offset_x intr[1, 2] -= offset_y # resize to render_tgt_size for training tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect(cur_hw=rgb.shape[:2], aspect_standard=aspect_standard, tgt_size=render_tgt_size, multiply=multiply) rgb = cv2.resize(rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA) mask = cv2.resize(mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA) if intr is not None: intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y) assert abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5, f"{intr[0, 2] * 2}, {rgb.shape[1]}" assert abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5, f"{intr[1, 2] * 2}, {rgb.shape[0]}" intr[0, 2] = rgb.shape[1] // 2 intr[1, 2] = rgb.shape[0] // 2 rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) # [1, 3, H, W] mask = torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0) # [1, 1, H, W] # read shape_param shape_param = None if get_shape_param: cor_flame_path = os.path.join(os.path.dirname(os.path.dirname(rgb_path)),'canonical_flame_param.npz') flame_p = np.load(cor_flame_path) shape_param = torch.FloatTensor(flame_p['shape']) return rgb, mask, intr, shape_param def extract_imgs_from_video(video_file, save_root, fps): print(f"extract_imgs_from_video:{video_file}") vr = decord.VideoReader(video_file) for i in range(0, len(vr), fps): frame = vr[i].asnumpy() save_path = os.path.join(save_root, f"{i:05d}.jpg") cv2.imwrite(save_path, frame[:, :, (2, 1, 0)]) def predict_motion_seqs_from_images(image_folder:str, save_root, fps=6): id_name = os.path.splitext(os.path.basename(image_folder))[0] if os.path.isfile(image_folder) and (image_folder.endswith("mp4") or image_folder.endswith("move")): save_frame_root = os.path.join(save_root, "extracted_frames", id_name) if not os.path.exists(save_frame_root): os.makedirs(save_frame_root, exist_ok=True) extract_imgs_from_video(video_file=image_folder, save_root=save_frame_root, fps=fps) else: print("skip extract_imgs_from_video......") image_folder = save_frame_root image_folder_abspath = os.path.abspath(image_folder) print(f"predict motion seq:{image_folder_abspath}") save_flame_root = image_folder + "_flame_params_mhmr" if not os.path.exists(save_flame_root): cmd = f"cd thirdparty/multi-hmr && python infer_batch.py --data_root {image_folder_abspath} --out_folder {image_folder_abspath} --crop_head --crop_hand --pad_ratio 0.2 --smplify" os.system(cmd) else: print("skip predict flame.........") return save_flame_root, image_folder def render_flame_mesh(data, render_intrs, c2ws, human_model_path="./pretrained_models/human_model_files"): from lam.models.rendering.flame_model.flame import FlameHead, FlameHeadSubdivided from lam.models.rendering.utils.vis_utils import render_mesh subdivide = 2 flame_sub_model = FlameHeadSubdivided( 300, 100, add_teeth=True, add_shoulder=False, flame_model_path='pretrained_models/human_model_files/flame_assets/flame/flame2023.pkl', flame_lmk_embedding_path="pretrained_models/human_model_files/flame_assets/flame/landmark_embedding_with_eyes.npy", flame_template_mesh_path="pretrained_models/human_model_files/flame_assets/flame/head_template_mesh.obj", flame_parts_path="pretrained_models/human_model_files/flame_assets/flame/FLAME_masks.pkl", subdivide_num=subdivide ).cuda() shape = data['betas'].to('cuda') flame_param = {} flame_param['expr'] = data['expr'].to('cuda') flame_param['rotation'] = data['rotation'].to('cuda') flame_param['neck'] = data['neck_pose'].to('cuda') flame_param['jaw'] = data['jaw_pose'].to('cuda') flame_param['eyes'] = data['eyes_pose'].to('cuda') flame_param['translation'] = data['translation'].to('cuda') v_cano = flame_sub_model.get_cano_verts( shape.unsqueeze(0) ) ret = flame_sub_model.animation_forward( v_cano.repeat(flame_param['expr'].shape[0], 1, 1), shape.unsqueeze(0).repeat(flame_param['expr'].shape[0], 1), flame_param['expr'], flame_param['rotation'], flame_param['neck'], flame_param['jaw'], flame_param['eyes'], flame_param['translation'], zero_centered_at_root_node=False, return_landmarks=False, return_verts_cano=True, # static_offset=batch_data['static_offset'].to('cuda'), static_offset=None, ) flame_face = flame_sub_model.faces.cpu().squeeze().numpy() mesh_render_list = [] num_view = flame_param['expr'].shape[0] for v_idx in range(num_view): intr = render_intrs[v_idx] cam_param = {"focal": torch.tensor([intr[0, 0], intr[1, 1]]), "princpt": torch.tensor([intr[0, 2], intr[1, 2]])} render_shape = int(cam_param['princpt'][1]* 2), int(cam_param['princpt'][0] * 2) # require h, w vertices = ret["animated"][v_idx].cpu().squeeze() c2w = c2ws[v_idx] w2c = torch.inverse(c2w) R = w2c[:3, :3] T = w2c[:3, 3] vertices = vertices @ R + T mesh_render, is_bkg = render_mesh(vertices, flame_face, cam_param, np.ones((render_shape[0],render_shape[1], 3), dtype=np.float32)*255, return_bg_mask=True) mesh_render = mesh_render.astype(np.uint8) mesh_render_list.append(mesh_render) mesh_render = np.stack(mesh_render_list) return mesh_render def render_flame_mesh_gaga19(data, render_intrs, c2ws, human_model_path="./pretrained_models/human_model_files"): subdivide = 2 from lam.models.rendering.flame_model.flame import FlameHeadSubdivided flame_sub_model = FlameHeadSubdivided( 300, 100, add_teeth=True, add_shoulder=False, flame_model_path='pretrained_models/human_model_files/flame_assets/flame/flame2023.pkl', flame_lmk_embedding_path="pretrained_models/human_model_files/flame_assets/flame/landmark_embedding_with_eyes.npy", flame_template_mesh_path="pretrained_models/human_model_files/flame_assets/flame/head_template_mesh.obj", flame_parts_path="pretrained_models/human_model_files/flame_assets/flame/FLAME_masks.pkl", subdivide_num=subdivide ).cuda() shape = data['betas'].to('cuda') flame_param = {} flame_param['expr'] = data['expr'].to('cuda') flame_param['rotation'] = data['rotation'].to('cuda') flame_param['neck'] = data['neck_pose'].to('cuda') flame_param['jaw'] = data['jaw_pose'].to('cuda') flame_param['eyes'] = data['eyes_pose'].to('cuda') flame_param['translation'] = data['translation'].to('cuda') v_cano = flame_sub_model.get_cano_verts( shape.unsqueeze(0) ) ret = flame_sub_model.animation_forward( v_cano.repeat(flame_param['expr'].shape[0], 1, 1), shape.unsqueeze(0).repeat(flame_param['expr'].shape[0], 1), flame_param['expr'], flame_param['rotation'], flame_param['neck'], flame_param['jaw'], flame_param['eyes'], flame_param['translation'], zero_centered_at_root_node=False, return_landmarks=False, return_verts_cano=True, # static_offset=batch_data['static_offset'].to('cuda'), static_offset=None, ) flame_face = flame_sub_model.faces.cpu().squeeze().numpy() mesh_render_list = [] num_view = flame_param['expr'].shape[0] import trimesh from lam.models.rendering.flame.vis_utils import RenderMesh for v_idx in range(num_view): mesh = trimesh.Trimesh() mesh.vertices = np.array(ret["animated"][v_idx].cpu().squeeze()) mesh.faces = np.array(flame_sub_model.faces.cpu().squeeze()) renderer = RenderMesh(512, faces=mesh.faces, device="cuda") render_img, _ = renderer(ret["animated"][[v_idx]], focal_length=12.0, transform_matrix=c2ws[[v_idx]]) render_img = render_img[0].permute(1, 2, 0).detach().cpu().numpy().astype(np.uint8) mesh_render_list.append(render_img) mesh_render = np.stack(mesh_render_list) return mesh_render def _load_pose(frame_info): c2w = torch.eye(4) c2w = np.array(frame_info["transform_matrix"]) c2w[:3, 1:3] *= -1 c2w = torch.FloatTensor(c2w) intrinsic = torch.eye(4) intrinsic[0, 0] = frame_info["fl_x"] intrinsic[1, 1] = frame_info["fl_y"] intrinsic[0, 2] = frame_info["cx"] intrinsic[1, 2] = frame_info["cy"] intrinsic = intrinsic.float() return c2w, intrinsic def load_flame_params(flame_file_path, teeth_bs=None): flame_param = dict(np.load(flame_file_path, allow_pickle=True)) flame_param_tensor = {} flame_param_tensor['expr'] = torch.FloatTensor(flame_param['expr'])[0] flame_param_tensor['rotation'] = torch.FloatTensor(flame_param['rotation'])[0] flame_param_tensor['neck_pose'] = torch.FloatTensor(flame_param['neck_pose'])[0] flame_param_tensor['jaw_pose'] = torch.FloatTensor(flame_param['jaw_pose'])[0] flame_param_tensor['eyes_pose'] = torch.FloatTensor(flame_param['eyes_pose'])[0] flame_param_tensor['translation'] = torch.FloatTensor(flame_param['translation'])[0] if teeth_bs is not None: flame_param_tensor['teeth_bs'] = torch.FloatTensor(teeth_bs) return flame_param_tensor def prepare_motion_seqs(motion_seqs_dir, image_folder, save_root, fps, bg_color, aspect_standard, enlarge_ratio, render_image_res, need_mask, multiply=16, vis_motion=False, shape_param=None, test_sample=False, cross_id=False, src_driven=["", ""], max_squen_length=None): if motion_seqs_dir is None: assert image_folder is not None motion_seqs_dir, image_folder = predict_motion_seqs_from_images(image_folder, save_root, fps) # source images c2ws, intrs, bg_colors = [], [], [] flame_params = [] # read shape_param if shape_param is None: print("using driven shape params") cor_flame_path = os.path.join(os.path.dirname(motion_seqs_dir),'canonical_flame_param.npz') flame_p = np.load(cor_flame_path) shape_param = torch.FloatTensor(flame_p['shape']) transforms_json = os.path.join(os.path.dirname(motion_seqs_dir), f"transforms.json") with open(transforms_json) as fp: data = json.load(fp) all_frames = data["frames"] all_frames = sorted(all_frames, key=lambda x: x["flame_param_path"]) print(f"len motion_seq:{len(all_frames)}, max motion_seq_len:{max_squen_length}") if(max_squen_length is not None): all_frames = all_frames[:max_squen_length] frame_ids = np.array(list(range(len(all_frames)))) if test_sample: print("sub sample 50 frames for testing.") sample_num = 50 frame_ids = frame_ids[np.linspace(0, frame_ids.shape[0]-1, sample_num).astype(np.int32)] print("sub sample ids:", frame_ids) teeth_bs_pth = os.path.join(os.path.dirname(motion_seqs_dir), "tracked_teeth_bs.npz") if os.path.exists(teeth_bs_pth): teeth_bs_lst = np.load(teeth_bs_pth)['expr_teeth'] else: teeth_bs_lst = None extra_dir_nm = "" if not cross_id else "_crossid" for idx, frame_id in enumerate(frame_ids): frame_info = all_frames[frame_id] flame_path = os.path.join(os.path.dirname(motion_seqs_dir), frame_info["flame_param_path"]) if image_folder is not None: file_name = os.path.splitext(os.path.basename(flame_path))[0] frame_path = os.path.join(image_folder, file_name + ".png") if not os.path.exists(frame_path): frame_path = os.path.join(image_folder, file_name + ".jpg") teeth_bs = teeth_bs_lst[frame_id] if teeth_bs_lst is not None else None flame_param = load_flame_params(flame_path, teeth_bs) c2w, intrinsic = _load_pose(frame_info) intrinsic = scale_intrs(intrinsic, 0.5, 0.5) c2ws.append(c2w) bg_colors.append(bg_color) intrs.append(intrinsic) flame_params.append(flame_param) c2ws = torch.stack(c2ws, dim=0) # [N, 4, 4] intrs = torch.stack(intrs, dim=0) # [N, 4, 4] bg_colors = torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1).repeat(1, 3) # [N, 3] flame_params_tmp = defaultdict(list) for flame in flame_params: for k, v in flame.items(): flame_params_tmp[k].append(v) for k, v in flame_params_tmp.items(): flame_params_tmp[k] = torch.stack(v) flame_params = flame_params_tmp # TODO check different betas for same person flame_params["betas"] = shape_param if vis_motion: motion_render = render_flame_mesh(flame_params, intrs, c2ws) else: motion_render = None # add batch dim for k, v in flame_params.items(): flame_params[k] = v.unsqueeze(0) # print(k, flame_params[k].shape, "motion_seq") c2ws = c2ws.unsqueeze(0) intrs = intrs.unsqueeze(0) bg_colors = bg_colors.unsqueeze(0) motion_seqs = {} motion_seqs["render_c2ws"] = c2ws motion_seqs["render_intrs"] = intrs motion_seqs["render_bg_colors"] = bg_colors motion_seqs["flame_params"] = flame_params # motion_seqs["rgbs"] = rgbs motion_seqs["vis_motion_render"] = motion_render return motion_seqs def prepare_gaga_motion_seqs(motion_seqs_dir, image_folder, save_root, fps, bg_color, aspect_standard, enlarge_ratio, render_image_res, need_mask, multiply=16, vis_motion=False, shape_param=None, test_sample=False, gaga_track_type="vfhq_test50_gagtrack_cano_flamescale1" ): if motion_seqs_dir is None: assert image_folder is not None motion_seqs_dir, image_folder = predict_motion_seqs_from_images(image_folder, save_root, fps) # motion_seqs = sorted(glob.glob(os.path.join(motion_seqs_dir, "*.npz"))) # source images c2ws, intrs, bg_colors = [], [], [] flame_params = [] # read shape_param if shape_param is None: print("using driven shape params") cor_flame_path = os.path.join(os.path.dirname(motion_seqs_dir),'canonical_flame_param.npz') flame_p = np.load(cor_flame_path) shape_param = torch.FloatTensor(flame_p['shape']) transforms_json = os.path.join(os.path.dirname(motion_seqs_dir), f"transforms.json") with open(transforms_json) as fp: data = json.load(fp) uid = os.path.dirname(motion_seqs_dir).strip('/').split('/')[-1] gag_optim_pth = os.path.join(f"train_data/{gaga_track_type}/", uid, "smoothed.pkl") gag_flame_dict = pkl.load(open(gag_optim_pth, 'rb')) all_frames = data["frames"] all_frames = sorted(all_frames, key=lambda x: x["flame_param_path"]) print(f"len motion_seq:{len(all_frames)}") frame_ids = np.array(list(range(len(all_frames)))) if test_sample: print("sub sample 50 frames for testing.") sample_num = 50 frame_ids = frame_ids[np.linspace(0, frame_ids.shape[0]-1, sample_num).astype(np.int32)] print("sub sample ids:", frame_ids) def map_flame_params(flame_param): """ flame_param ├── bbox: (4,)float32 ├── shapecode: (300,)float32 ├── expcode: (100,)float32 ├── posecode: (6,)float32 ├── neckcode: (3,)float32 ├── eyecode: (6,)float32 └── transform_matrix: (3, 4)float32 """ flame_param_tensor = {} flame_param_tensor['expr'] = torch.FloatTensor(flame_param['expcode']) # flame_param_tensor['rotation'] = torch.FloatTensor(flame_param['transform_matrix'])[:3, :3] flame_param_tensor['rotation'] = torch.FloatTensor(flame_param['posecode'])[:3] flame_param_tensor['neck_pose'] = torch.FloatTensor(flame_param.get('neckcode', np.zeros(3))) flame_param_tensor['jaw_pose'] = torch.FloatTensor(flame_param['posecode'][3:]) flame_param_tensor['eyes_pose'] = torch.FloatTensor(flame_param['eyecode']) flame_param_tensor['translation'] = torch.FloatTensor(np.zeros(3)) flame_param_tensor['shape'] = torch.FloatTensor(flame_param['shapecode']) return flame_param_tensor def load_pose_from_transform_mat(transform_mat): c2w = torch.FloatTensor(transform_mat).clone() # w2c infact # intrinsic is not used. intrinsic = torch.eye(4) intrinsic[0, 0] = 12 intrinsic[1, 1] = 12 intrinsic[0, 2] = 512 // 2 intrinsic[1, 2] = 512 // 2 intrinsic = intrinsic.float() return c2w, intrinsic for idx, frame_id in enumerate(frame_ids): frame_info = all_frames[frame_id] flame_path = os.path.join(os.path.dirname(motion_seqs_dir), frame_info["flame_param_path"]) # copy sampled images frame_id = int(flame_path.split('/')[-1].split('.')[0]) flame_key = "%08d.png" % frame_id # assert idx == frame_id, f"frame id {frame_id} should be the same as idx {idx}" img_path = flame_path.replace("/flame_param/", "/images/").replace(flame_path.split("/")[-1], "%05d_00.png" % frame_id) # img_path = flame_path.replace("/vfhq_test/", "/vfhq_test_tracking/").replace("/flame_param/", "/images/").replace(flame_path.split("/")[-1], flame_key) gt_img = cv2.imread(img_path) if gt_img.shape[0] != 512: gt_img = cv2.resize(gt_img, (512, 512), interpolation=cv2.INTER_AREA) new_img_fd = os.path.join(os.path.dirname(motion_seqs_dir), f"images_sampled50{gaga_track_type}") if not os.path.exists(new_img_fd): os.system(f"mkdir -p {new_img_fd}") new_img_pth = os.path.join(new_img_fd, "%04d.png" % idx) cv2.imwrite(new_img_pth, gt_img) gag_flame_param = gag_flame_dict[flame_key] flame_param = map_flame_params(gag_flame_param) c2w, intrinsic = load_pose_from_transform_mat(gag_flame_param['transform_matrix']) if shape_param is None: shape_param = flame_param["shape"] c2ws.append(c2w) bg_colors.append(bg_color) intrs.append(intrinsic) flame_params.append(flame_param) c2ws = torch.stack(c2ws, dim=0) # [N, 4, 4] intrs = torch.stack(intrs, dim=0) # [N, 4, 4] bg_colors = torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1).repeat(1, 3) # [N, 3] flame_params_tmp = defaultdict(list) for flame in flame_params: for k, v in flame.items(): flame_params_tmp[k].append(v) for k, v in flame_params_tmp.items(): flame_params_tmp[k] = torch.stack(v) flame_params = flame_params_tmp # TODO check different betas for same person flame_params["betas"] = shape_param if vis_motion: motion_render = render_flame_mesh_gaga19(flame_params, None, c2ws) else: motion_render = None # add batch dim for k, v in flame_params.items(): flame_params[k] = v.unsqueeze(0) # print(k, flame_params[k].shape, "motion_seq") c2ws = c2ws.unsqueeze(0) intrs = intrs.unsqueeze(0) bg_colors = bg_colors.unsqueeze(0) motion_seqs = {} motion_seqs["render_c2ws"] = c2ws motion_seqs["render_intrs"] = intrs motion_seqs["render_bg_colors"] = bg_colors motion_seqs["flame_params"] = flame_params motion_seqs["vis_motion_render"] = motion_render return motion_seqs