|
|
|
|
|
|
|
|
|
import torch |
|
import torchvision |
|
|
|
def reproject_vertices(flame_model, vgg_results): |
|
|
|
vertices, _ = flame_model( |
|
shape_params=vgg_results['shapecode'], |
|
expression_params=vgg_results['expcode'], |
|
pose_params=vgg_results['posecode'], |
|
verts_sclae=1.0 |
|
) |
|
vertices[:, :, 2] += 0.05 |
|
vgg_landmarks3d = flame_model._vertices2landmarks(vertices) |
|
vgg_transform_results = vgg_results['transform'] |
|
rotation_mat = rot_mat_from_6dof(vgg_transform_results['rotation_6d']).type(vertices.dtype) |
|
translation = vgg_transform_results['translation'][:, None, :] |
|
scale = torch.clamp(vgg_transform_results['scale'][:, None], 1e-8) |
|
rot_vertices = vertices.clone() |
|
rot_vertices = torch.matmul(rotation_mat.unsqueeze(1), rot_vertices.unsqueeze(-1))[..., 0] |
|
vgg_landmarks3d = torch.matmul(rotation_mat.unsqueeze(1), vgg_landmarks3d.unsqueeze(-1))[..., 0] |
|
proj_vertices = (rot_vertices * scale) + translation |
|
vgg_landmarks3d = (vgg_landmarks3d * scale) + translation |
|
|
|
trans_padding, trans_scale = vgg_results['normalize']['padding'], vgg_results['normalize']['scale'] |
|
proj_vertices[:, :, 0] -= trans_padding[:, 0, None] |
|
proj_vertices[:, :, 1] -= trans_padding[:, 1, None] |
|
proj_vertices = proj_vertices / trans_scale[:, None, None] |
|
vgg_landmarks3d[:, :, 0] -= trans_padding[:, 0, None] |
|
vgg_landmarks3d[:, :, 1] -= trans_padding[:, 1, None] |
|
vgg_landmarks3d = vgg_landmarks3d / trans_scale[:, None, None] |
|
return proj_vertices.float()[..., :2], vgg_landmarks3d.float()[..., :2] |
|
|
|
|
|
def rot_mat_from_6dof(v: torch.Tensor) -> torch.Tensor: |
|
assert v.shape[-1] == 6 |
|
v = v.view(-1, 6) |
|
vx, vy = v[..., :3].clone(), v[..., 3:].clone() |
|
|
|
b1 = torch.nn.functional.normalize(vx, dim=-1) |
|
b3 = torch.nn.functional.normalize(torch.cross(b1, vy, dim=-1), dim=-1) |
|
b2 = -torch.cross(b1, b3, dim=1) |
|
return torch.stack((b1, b2, b3), dim=-1) |
|
|
|
|
|
def nms(boxes_xyxy, scores, flame_params, |
|
confidence_threshold: float = 0.5, iou_threshold: float = 0.5, |
|
top_k: int = 1000, keep_top_k: int = 100 |
|
): |
|
for pred_bboxes_xyxy, pred_bboxes_conf, pred_flame_params in zip( |
|
boxes_xyxy.detach().float(), |
|
scores.detach().float(), |
|
flame_params.detach().float(), |
|
): |
|
pred_bboxes_conf = pred_bboxes_conf.squeeze(-1) |
|
conf_mask = pred_bboxes_conf >= confidence_threshold |
|
|
|
pred_bboxes_conf = pred_bboxes_conf[conf_mask] |
|
pred_bboxes_xyxy = pred_bboxes_xyxy[conf_mask] |
|
pred_flame_params = pred_flame_params[conf_mask] |
|
|
|
|
|
if pred_bboxes_conf.size(0) > top_k: |
|
topk_candidates = torch.topk(pred_bboxes_conf, k=top_k, largest=True, sorted=True) |
|
pred_bboxes_conf = pred_bboxes_conf[topk_candidates.indices] |
|
pred_bboxes_xyxy = pred_bboxes_xyxy[topk_candidates.indices] |
|
pred_flame_params = pred_flame_params[topk_candidates.indices] |
|
|
|
|
|
idx_to_keep = torchvision.ops.boxes.nms(boxes=pred_bboxes_xyxy, scores=pred_bboxes_conf, iou_threshold=iou_threshold) |
|
|
|
final_bboxes = pred_bboxes_xyxy[idx_to_keep][: keep_top_k] |
|
final_scores = pred_bboxes_conf[idx_to_keep][: keep_top_k] |
|
final_params = pred_flame_params[idx_to_keep][: keep_top_k] |
|
return final_bboxes, final_scores, final_params |
|
|