File size: 19,833 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import traceback
import os
import time
import math
import argparse
import shutil
import torch
import safetensors
from omegaconf import OmegaConf
from abc import abstractmethod
from contextlib import contextmanager
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
import cv2
import numpy as np
from lam.utils.logging import configure_logger
from lam.utils.compile import configure_dynamo
from lam.runners.abstract import Runner
logger = get_logger(__name__)
def parse_configs():
# Define argparse arguments
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./assets/config.yaml')
parser.add_argument('--resume', type=str, default='')
args, unknown = parser.parse_known_args()
# Load configuration file
cfg = OmegaConf.load(args.config)
# Override with command-line arguments
cli_cfg = OmegaConf.from_cli(unknown)
cfg = OmegaConf.merge(cfg, cli_cfg)
if len(args.resume) > 0:
cfg.train.resume = args.resume
return cfg
class Trainer(Runner):
def __init__(self):
super().__init__()
self.cfg = parse_configs()
self.has_disc = self.cfg.model.has_disc if hasattr(self.cfg.model, "has_disc") else False
self.timestamp = time.strftime("%Y%m%d-%H%M%S")
self.accelerator = Accelerator(
mixed_precision=self.cfg.train.mixed_precision,
gradient_accumulation_steps=self.cfg.train.accum_steps,
log_with=tuple(self.cfg.logger.trackers),
project_config=ProjectConfiguration(
logging_dir=self.cfg.logger.tracker_root,
),
use_seedable_sampler=True,
kwargs_handlers=[
DistributedDataParallelKwargs(
find_unused_parameters=self.cfg.train.find_unused_parameters,
),
],
)
self.weight_dtype = self.get_weight_dtype()
print(f"weight_dtype:{self.weight_dtype}")
set_seed(self.cfg.experiment.seed, device_specific=True)
with self.accelerator.main_process_first():
configure_logger(
stream_level=self.cfg.logger.stream_level,
log_level=self.cfg.logger.log_level,
file_path=os.path.join(
self.cfg.logger.log_root,
self.cfg.experiment.parent, self.cfg.experiment.child,
f"{self.timestamp}.log",
) if self.accelerator.is_main_process else None,
)
logger.info(self.accelerator.state, main_process_only=False, in_order=True)
configure_dynamo(dict(self.cfg.compile))
# attributes with defaults
self.model : torch.nn.Module = None
self.optimizer: torch.optim.Optimizer = None
self.scheduler: torch.optim.lr_scheduler.LRScheduler = None
self.train_loader: torch.utils.data.DataLoader = None
self.val_loader: torch.utils.data.DataLoader = None
self.N_max_global_steps: int = None
self.N_global_steps_per_epoch: int = None
self.global_step: int = 0
self.current_epoch: int = 0
def __enter__(self):
self.accelerator.init_trackers(
project_name=f"{self.cfg.experiment.parent}/{self.cfg.experiment.child}",
)
self.prepare_everything()
self.log_inital_info()
#self.accelerator.trackers[0].logging_dir
self.trackers_logging_dir = f"{self.cfg.logger.tracker_root}/{self.cfg.experiment.parent}/{self.cfg.experiment.child}"
os.makedirs(self.trackers_logging_dir, exist_ok=True)
self.snapshot_cfg(self.cfg)
return self
def get_weight_dtype(self):
weight_dtype = torch.float32
if self.accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif self.accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
elif self.accelerator.mixed_precision == "no":
weight_dtype = torch.float32
else:
raise NotImplementedError
return weight_dtype
def __exit__(self, exc_type, exc_val, exc_tb):
self.accelerator.end_training()
@staticmethod
def control(option: str = None, synchronized: bool = False):
def decorator(func):
def wrapper(self, *args, **kwargs):
if option is None or hasattr(self.accelerator, option):
accelerated_func = getattr(self.accelerator, option)(func) if option is not None else func
result = accelerated_func(self, *args, **kwargs)
if synchronized:
self.accelerator.wait_for_everyone()
return result
else:
raise AttributeError(f"Accelerator has no attribute {option}")
return wrapper
return decorator
@contextmanager
def exec_in_order(self):
for rank in range(self.accelerator.num_processes):
try:
if self.accelerator.process_index == rank:
yield
finally:
self.accelerator.wait_for_everyone()
@property
def device(self):
return self.accelerator.device
@property
def is_distributed(self) -> bool:
return self.accelerator.num_processes > 1
def prepare_everything(self, is_dist_validation: bool = True):
# prepare with accelerator
if is_dist_validation:
if not self.has_disc:
self.model, self.optimizer, self.train_loader, self.val_loader = \
self.accelerator.prepare(
self.model, self.optimizer, self.train_loader, self.val_loader,
)
else:
self.model, self.model_disc, self.optimizer, self.optimizer_disc, self.train_loader, self.val_loader = \
self.accelerator.prepare(
self.model, self.model_disc, self.optimizer, self.optimizer_disc, self.train_loader, self.val_loader,
)
else:
if not self.has_disc:
self.model, self.optimizer, self.train_loader = \
self.accelerator.prepare(
self.model, self.optimizer, self.train_loader,
)
else:
self.model, self.model_disc, self.optimizer, self.optimizer_disc, self.train_loader = \
self.accelerator.prepare(
self.model, self.model_disc, self.optimizer, self.optimizer_disc, self.train_loader,
)
self.accelerator.register_for_checkpointing(self.scheduler)
if self.has_disc:
self.accelerator.register_for_checkpointing(self.scheduler_disc)
# prepare stats
N_total_batch_size = self.cfg.train.batch_size * self.accelerator.num_processes * self.cfg.train.accum_steps
self.N_global_steps_per_epoch = math.ceil(len(self.train_loader) / self.cfg.train.accum_steps)
self.N_max_global_steps = self.N_global_steps_per_epoch * self.cfg.train.epochs
if self.cfg.train.debug_global_steps is not None:
logger.warning(f"Overriding max global steps from {self.N_max_global_steps} to {self.cfg.train.debug_global_steps}")
self.N_max_global_steps = self.cfg.train.debug_global_steps
print(f"======== Trainable parameters ========")
print(f"** Total: {sum(p.numel() for p in self.model.parameters() if p.requires_grad) / 1e6}M")
logger.info(f"======== Statistics ========")
logger.info(f"** N_max_global_steps: {self.N_max_global_steps}")
logger.info(f"** N_total_batch_size: {N_total_batch_size}")
logger.info(f"** N_epochs: {self.cfg.train.epochs}")
logger.info(f"** N_global_steps_per_epoch: {self.N_global_steps_per_epoch}")
logger.debug(f"** Prepared loader length: {len(self.train_loader)}")
logger.info(f"** Distributed validation: {is_dist_validation}")
logger.info(f"============================")
logger.info(f"======== Trainable parameters ========")
logger.info(f"** Total: {sum(p.numel() for p in self.model.parameters() if p.requires_grad)}")
for sub_name, sub_module in self.accelerator.unwrap_model(self.model).named_children():
logger.info(f"** {sub_name}: {sum(p.numel() for p in sub_module.parameters() if p.requires_grad)}")
logger.info(f"=====================================")
self.accelerator.wait_for_everyone()
# load checkpoint or model
self.load_ckpt_or_auto_resume_(self.cfg)
# register hooks
self.register_hooks()
@abstractmethod
def register_hooks(self):
pass
def auto_resume_(self, cfg, ckpt_root=None) -> bool:
if ckpt_root is None:
ckpt_root = os.path.join(
cfg.saver.checkpoint_root,
cfg.experiment.parent, cfg.experiment.child,
)
if not os.path.exists(ckpt_root):
return False
ckpt_dirs = os.listdir(ckpt_root)
if len(ckpt_dirs) == 0:
return False
ckpt_dirs.sort()
latest_ckpt = ckpt_dirs[-1]
latest_ckpt_dir = os.path.join(ckpt_root, latest_ckpt)
logger.info(f"======== Auto-resume from {latest_ckpt_dir} ========")
self.accelerator.load_state(latest_ckpt_dir)
self.global_step = int(latest_ckpt)
self.current_epoch = self.global_step // self.N_global_steps_per_epoch
return True
def load_model_(self, cfg):
logger.info(f"======== Loading model from {cfg.saver.load_model} ========")
# model = self.accelerator.unwrap_model(self.model)
# state_dict = safetensors.torch.load_file(cfg.saver.load_model, device='cpu')
# state_dict.pop('pcl_embeddings.weight')
# model_state_dict = model.state_dict()
# missing, unexpected = model.load_state_dict(state_dict, strict=False)
# missing = set(missing)
# print("missing:", missing)
# print("unexpected:", unexpected)
try:
safetensors.torch.load_model(
self.accelerator.unwrap_model(self.model),
cfg.saver.load_model,
strict=cfg.saver.load_model_strict if hasattr(cfg.saver, "load_model_strict") else True,
)
except:
traceback.print_exc()
model = self.accelerator.unwrap_model(self.model)
model_state_dict = model.state_dict()
state_dict = safetensors.torch.load_file(cfg.saver.load_model, device='cpu')
for key in list(state_dict):
if "renderer.flame_model" in key:
print(f"pop:{key}, shape:{state_dict[key].shape}")
state_dict.pop(key)
if "renderer.flame_model" in key:
print(f"pop:{key}, shape:{state_dict[key].shape}")
state_dict.pop(key)
if "renderer.gs_net.out_layers.scaling.weight" == key:
if state_dict["renderer.gs_net.out_layers.scaling.weight"].shape != model_state_dict["renderer.gs_net.out_layers.scaling.weight"].shape:
# state_dict["renderer.gs_net.out_layers.scaling.weight"] = state_dict["renderer.gs_net.out_layers.scaling.weight"][:1]
# state_dict["renderer.gs_net.out_layers.scaling.bias"] = state_dict["renderer.gs_net.out_layers.scaling.bias"][:1]
state_dict.pop("renderer.gs_net.out_layers.scaling.weight")
state_dict.pop("renderer.gs_net.out_layers.scaling.bias")
missing, unexpected = model.load_state_dict(state_dict, strict=False)
missing = set(missing)
print("missing:", missing)
print("unexpected:", unexpected)
if self.has_disc and cfg.saver.get("load_model_disc", None) is not None:
safetensors.torch.load_model(
self.accelerator.unwrap_model(self.model_disc),
cfg.saver.load_model_disc,
strict=cfg.saver.load_model_strict if hasattr(cfg.saver, "load_model_strict") else True,
)
logger.info(f"======== Model loaded ========")
@control(synchronized=True)
def load_ckpt_or_auto_resume_(self, cfg):
# auto resume has higher priority, load model from path if auto resume is not available
# cfg.saver.auto_resume and cfg.saver.load_model
if hasattr(cfg.saver, "load_ckpt") and cfg.saver.load_ckpt:
successful_resume = self.auto_resume_(cfg, ckpt_root=cfg.saver.load_ckpt)
if successful_resume:
return
if cfg.saver.auto_resume:
successful_resume = self.auto_resume_(cfg)
if successful_resume:
return
if cfg.saver.load_model:
successful_load = self.load_model_(cfg)
if successful_load:
return
logger.debug(f"======== No checkpoint or model is loaded ========")
# @control('on_main_process', synchronized=True)
def _save_checkpoint(self):
ckpt_dir = os.path.join(
self.cfg.saver.checkpoint_root,
self.cfg.experiment.parent, self.cfg.experiment.child,
f"{self.global_step:06d}",
)
self.accelerator.save_state(output_dir=ckpt_dir, safe_serialization=True)
logger.info(f"======== Saved checkpoint at global step {self.global_step} ========")
# manage stratified checkpoints
ckpt_dirs = os.listdir(os.path.dirname(ckpt_dir))
ckpt_dirs.sort()
max_ckpt = int(ckpt_dirs[-1])
ckpt_base = int(self.cfg.saver.checkpoint_keep_level)
ckpt_period = self.cfg.saver.checkpoint_global_steps
logger.debug(f"Checkpoint base: {ckpt_base}")
logger.debug(f"Checkpoint period: {ckpt_period}")
cur_order = ckpt_base ** math.floor(math.log(max_ckpt // ckpt_period, ckpt_base))
cur_idx = 0
while cur_order > 0:
cur_digit = max_ckpt // ckpt_period // cur_order % ckpt_base
while cur_idx < len(ckpt_dirs) and int(ckpt_dirs[cur_idx]) // ckpt_period // cur_order % ckpt_base < cur_digit:
if int(ckpt_dirs[cur_idx]) // ckpt_period % cur_order != 0:
shutil.rmtree(os.path.join(os.path.dirname(ckpt_dir), ckpt_dirs[cur_idx]))
logger.info(f"Removed checkpoint {ckpt_dirs[cur_idx]}")
cur_idx += 1
cur_order //= ckpt_base
def save_checkpoint(self):
if self.accelerator.state.deepspeed_plugin is not None:
logger.info("deepspeed mode to save ckpt...............")
self._save_checkpoint()
else:
if self.accelerator.is_main_process:
self._save_checkpoint()
@control('on_main_process')
def snapshot_cfg(self, cfg):
# save_path=os.path.join(self.accelerator.trackers[0].logging_dir, "config.yaml")
save_path=os.path.join(self.trackers_logging_dir, "config.yaml")
OmegaConf.save(cfg, save_path)
@property
def global_step_in_epoch(self):
return self.global_step % self.N_global_steps_per_epoch
@abstractmethod
def _build_model(self):
pass
@abstractmethod
def _build_optimizer(self):
pass
@abstractmethod
def _build_scheduler(self):
pass
@abstractmethod
def _build_dataloader(self):
pass
@abstractmethod
def _build_loss_fn(self):
pass
@abstractmethod
def train(self):
pass
@abstractmethod
def evaluate(self):
pass
@staticmethod
def _get_str_progress(epoch: int = None, step: int = None):
if epoch is not None:
log_type = 'epoch'
log_progress = epoch
elif step is not None:
log_type = 'step'
log_progress = step
else:
raise ValueError('Either epoch or step must be provided')
return log_type, log_progress
@control('on_main_process')
def log_scalar_kwargs(self, epoch: int = None, step: int = None, split: str = None, **scalar_kwargs):
log_type, log_progress = self._get_str_progress(epoch, step)
split = f'/{split}' if split else ''
for key, value in scalar_kwargs.items():
self.accelerator.log({f'{key}{split}/{log_type}': value}, log_progress)
def log_images_each_process(self, values: dict, step: int | None = None, log_kwargs: dict | None = {}):
for tracker in self.accelerator.trackers:
if hasattr(tracker, 'log_images'):
tracker.log_images(values, step=step, **log_kwargs.get(tracker.name, {}))
# log_dir = tracker.logging_dir
log_dir = self.trackers_logging_dir
if log_kwargs.get("imwrite_image", True):
for k, v in values.items():
v = v[0].permute(1, 2, 0).detach().cpu().numpy()
save_path = os.path.join(log_dir, f"{step:05d}_{k.replace('/', '_')}.jpg")
# print(save_path)
cv2.imwrite(save_path, (v * 255).astype(np.uint8)[:, :, (2, 1, 0)])
@control('on_main_process')
def log_images(self, values: dict, step: int | None = None, log_kwargs: dict | None = {}):
self.log_images_each_process(values, step, log_kwargs)
@control('on_main_process')
def log_optimizer(self, epoch: int = None, step: int = None, attrs: list[str] = [], group_ids: list[int] = []):
log_type, log_progress = self._get_str_progress(epoch, step)
assert self.optimizer is not None, 'Optimizer is not initialized'
if not attrs:
logger.warning('No optimizer attributes are provided, nothing will be logged')
if not group_ids:
logger.warning('No optimizer group ids are provided, nothing will be logged')
for attr in attrs:
assert attr in ['lr', 'momentum', 'weight_decay'], f'Invalid optimizer attribute {attr}'
for group_id in group_ids:
self.accelerator.log({f'opt/{attr}/{group_id}': self.optimizer.param_groups[group_id][attr]}, log_progress)
@control('on_main_process')
def log_inital_info(self):
assert self.model is not None, 'Model is not initialized'
assert self.optimizer is not None, 'Optimizer is not initialized'
assert self.scheduler is not None, 'Scheduler is not initialized'
self.accelerator.log({'Config': "```\n" + OmegaConf.to_yaml(self.cfg) + "\n```"})
self.accelerator.log({'Model': "```\n" + str(self.model) + "\n```"})
self.accelerator.log({'Optimizer': "```\n" + str(self.optimizer) + "\n```"})
self.accelerator.log({'Scheduler': "```\n" + str(self.scheduler) + "\n```"})
def run(self):
self.train()
|