Spaces:
Veein
/
Runtime error

File size: 29,623 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import traceback
import time
import torch
import os
import argparse
import mcubes
import trimesh
import numpy as np
from PIL import Image
from glob import glob
from omegaconf import OmegaConf
from tqdm.auto import tqdm
from accelerate.logging import get_logger

from lam.runners.infer.head_utils import prepare_motion_seqs, preprocess_image, prepare_gaga_motion_seqs


from .base_inferrer import Inferrer
from lam.datasets.cam_utils import build_camera_principle, build_camera_standard, surrounding_views_linspace, create_intrinsics
from lam.utils.logging import configure_logger
from lam.runners import REGISTRY_RUNNERS
from lam.utils.video import images_to_video
from lam.utils.hf_hub import wrap_model_hub
from lam.models.modeling_lam import ModelLAM
from safetensors.torch import load_file
import moviepy.editor as mpy


logger = get_logger(__name__)


def parse_configs():

    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str)
    parser.add_argument('--infer', type=str)
    args, unknown = parser.parse_known_args()

    cfg = OmegaConf.create()
    cli_cfg = OmegaConf.from_cli(unknown)

    # parse from ENV
    if os.environ.get('APP_INFER') is not None:
        args.infer = os.environ.get('APP_INFER')
    if os.environ.get('APP_MODEL_NAME') is not None:
        cli_cfg.model_name = os.environ.get('APP_MODEL_NAME')

    if args.config is not None:
        cfg = OmegaConf.load(args.config)
        cfg_train = OmegaConf.load(args.config)
        cfg.source_size = cfg_train.dataset.source_image_res
        cfg.render_size = cfg_train.dataset.render_image.high
        _relative_path = os.path.join(cfg_train.experiment.parent, cfg_train.experiment.child, os.path.basename(cli_cfg.model_name).split('_')[-1])

        cfg.save_tmp_dump = os.path.join("exps", 'save_tmp', _relative_path)
        cfg.image_dump = os.path.join("exps", 'images', _relative_path)
        cfg.video_dump = os.path.join("exps", 'videos', _relative_path)
        cfg.mesh_dump = os.path.join("exps", 'meshes', _relative_path)
        
    if args.infer is not None:
        cfg_infer = OmegaConf.load(args.infer)
        cfg.merge_with(cfg_infer)
        cfg.setdefault("save_tmp_dump", os.path.join("exps", cli_cfg.model_name, 'save_tmp'))
        cfg.setdefault("image_dump", os.path.join("exps", cli_cfg.model_name, 'images'))
        cfg.setdefault('video_dump', os.path.join("dumps", cli_cfg.model_name, 'videos'))
        cfg.setdefault('mesh_dump', os.path.join("dumps", cli_cfg.model_name, 'meshes'))
    
    cfg.motion_video_read_fps = 6
    cfg.merge_with(cli_cfg)

    """
    [required]
    model_name: str
    image_input: str
    export_video: bool
    export_mesh: bool

    [special]
    source_size: int
    render_size: int
    video_dump: str
    mesh_dump: str

    [default]
    render_views: int
    render_fps: int
    mesh_size: int
    mesh_thres: float
    frame_size: int
    logger: str
    """

    cfg.setdefault('logger', 'INFO')

    # assert not (args.config is not None and args.infer is not None), "Only one of config and infer should be provided"
    assert cfg.model_name is not None, "model_name is required"
    if not os.environ.get('APP_ENABLED', None):
        assert cfg.image_input is not None, "image_input is required"
        assert cfg.export_video or cfg.export_mesh, \
            "At least one of export_video or export_mesh should be True"
        cfg.app_enabled = False
    else:
        cfg.app_enabled = True

    return cfg


def count_parameters_excluding_modules(model, exclude_names=[]):
    """
    Counts the number of parameters in a PyTorch model, excluding specified modules by name.

    Parameters:
    - model (torch.nn.Module): The PyTorch model instance.
    - exclude_names (list of str): List of module names to exclude from the parameter count.

    Returns:
    - int: Total number of parameters in the model, excluding specified modules.
    """
    total_size_bytes = 0
    total_size_bits = 0
    for name, module in model.named_modules():
        # Check if the module name should be excluded
        # print(name)
        if any(exclude_name in name for exclude_name in exclude_names):
            continue
        
        # Add up the sizes of the parameters if the module is not excluded
        for param in module.parameters():
            total_size_bytes += param.numel() # * param.element_size()
            if param.is_floating_point():
                total_size_bits += param.numel() # * torch.finfo(param.dtype).bits
            else:
                total_size_bits += param.numel() # * torch.iinfo(param.dtype).bits

    # Convert bytes to megabytes
    total_size_mb = total_size_bytes / (1024 ** 2)
    print("==="*16*3, f"\nTotal number of parameters: {total_size_mb}M", "\n"+"==="*16*3)
    print(f"model size: {total_size_bits} / bit | {total_size_bits / 1e6:.2f} / MB")

    return total_size_mb


@REGISTRY_RUNNERS.register('infer.lam')
class LAMInferrer(Inferrer):

    EXP_TYPE: str = 'lam'

    def __init__(self):
        super().__init__()

        self.cfg = parse_configs()
        """
        configure_logger(
            stream_level=self.cfg.logger,
            log_level=self.cfg.logger,
        )
        """

        self.model: LAMInferrer = self._build_model(self.cfg).to(self.device)

    def _build_model(self, cfg):
        """
        from lam.models import model_dict
        hf_model_cls = wrap_model_hub(model_dict[self.EXP_TYPE])
        model = hf_model_cls.from_pretrained(cfg.model_name)
        """
        from lam.models import ModelLAM
        model = ModelLAM(**cfg.model)
        # total_params = count_parameters_excluding_modules(model, [])
        # total_params = count_parameters_excluding_modules(model, ['encoder'])

        resume = os.path.join(cfg.model_name, "model.safetensors")
        print("==="*16*3)
        print("loading pretrained weight from:", resume)
        if resume.endswith('safetensors'):
            ckpt = load_file(resume, device='cpu')
        else:
            ckpt = torch.load(resume, map_location='cpu')
        state_dict = model.state_dict()
        for k, v in ckpt.items():
            if k in state_dict:
                if state_dict[k].shape == v.shape:
                    state_dict[k].copy_(v)
                else:
                    print(f"WARN] mismatching shape for param {k}: ckpt {v.shape} != model {state_dict[k].shape}, ignored.")
            else:
                print(f"WARN] unexpected param {k}: {v.shape}")
        print("finish loading pretrained weight from:", resume)
        print("==="*16*3)
        return model

    def _default_source_camera(self, dist_to_center: float = 2.0, batch_size: int = 1, device: torch.device = torch.device('cpu')):
        # return: (N, D_cam_raw)
        canonical_camera_extrinsics = torch.tensor([[
            [1, 0, 0, 0],
            [0, 0, -1, -dist_to_center],
            [0, 1, 0, 0],
        ]], dtype=torch.float32, device=device)
        canonical_camera_intrinsics = create_intrinsics(
            f=0.75,
            c=0.5,
            device=device,
        ).unsqueeze(0)
        source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
        return source_camera.repeat(batch_size, 1)

    def _default_render_cameras(self, n_views: int, batch_size: int = 1, device: torch.device = torch.device('cpu')):
        # return: (N, M, D_cam_render)
        render_camera_extrinsics = surrounding_views_linspace(n_views=n_views, device=device)
        render_camera_intrinsics = create_intrinsics(
            f=0.75,
            c=0.5,
            device=device,
        ).unsqueeze(0).repeat(render_camera_extrinsics.shape[0], 1, 1)
        render_cameras = build_camera_standard(render_camera_extrinsics, render_camera_intrinsics)
        return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)

    def infer_planes(self, image: torch.Tensor, source_cam_dist: float):
        N = image.shape[0]
        source_camera = self._default_source_camera(dist_to_center=source_cam_dist, batch_size=N, device=self.device)
        planes = self.model.forward_planes(image, source_camera)
        assert N == planes.shape[0]
        return planes

    def infer_video(self, planes: torch.Tensor, frame_size: int, render_size: int, render_views: int, render_fps: int, dump_video_path: str):
        N = planes.shape[0]
        render_cameras = self._default_render_cameras(n_views=render_views, batch_size=N, device=self.device)
        render_anchors = torch.zeros(N, render_cameras.shape[1], 2, device=self.device)
        render_resolutions = torch.ones(N, render_cameras.shape[1], 1, device=self.device) * render_size
        render_bg_colors = torch.ones(N, render_cameras.shape[1], 1, device=self.device, dtype=torch.float32) * 0. # 1.

        frames = []
        for i in range(0, render_cameras.shape[1], frame_size):
            frames.append(
                self.model.synthesizer(
                    planes=planes,
                    cameras=render_cameras[:, i:i+frame_size],
                    anchors=render_anchors[:, i:i+frame_size],
                    resolutions=render_resolutions[:, i:i+frame_size],
                    bg_colors=render_bg_colors[:, i:i+frame_size],
                    region_size=render_size,
                )
            )
        # merge frames
        frames = {
            k: torch.cat([r[k] for r in frames], dim=1)
            for k in frames[0].keys()
        }
        # dump
        os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
        for k, v in frames.items():
            if k == 'images_rgb':
                images_to_video(
                    images=v[0],
                    output_path=dump_video_path,
                    fps=render_fps,
                    gradio_codec=self.cfg.app_enabled,
                )

    def infer_mesh(self, planes: torch.Tensor, mesh_size: int, mesh_thres: float, dump_mesh_path: str):
        grid_out = self.model.synthesizer.forward_grid(
            planes=planes,
            grid_size=mesh_size,
        )
        
        vtx, faces = mcubes.marching_cubes(grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(), mesh_thres)
        vtx = vtx / (mesh_size - 1) * 2 - 1

        vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=self.device).unsqueeze(0)
        vtx_colors = self.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].squeeze(0).cpu().numpy()  # (0, 1)
        vtx_colors = (vtx_colors * 255).astype(np.uint8)
        
        mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)

        # dump
        os.makedirs(os.path.dirname(dump_mesh_path), exist_ok=True)
        mesh.export(dump_mesh_path)

    def save_imgs_2_video(self, imgs, v_pth, fps):
        img_lst = [imgs[i] for i in range(imgs.shape[0])]
        # Convert the list of NumPy arrays to a list of ImageClip objects
        clips = [mpy.ImageClip(img).set_duration(0.1) for img in img_lst]  # 0.1 seconds per frame

        # Concatenate the ImageClips into a single VideoClip
        video = mpy.concatenate_videoclips(clips, method="compose")

        # Write the VideoClip to a file
        video.write_videofile(v_pth, fps=fps)  # setting fps to 10 as example
    
    def infer_single(self, image_path: str,
                     motion_seqs_dir, 
                     motion_img_dir,
                     motion_video_read_fps,
                     export_video: bool, 
                     export_mesh: bool, 
                     dump_tmp_dir:str,  # require by extracting motion seq from video, to save some results
                     dump_image_dir:str,
                     dump_video_path: str, 
                     dump_mesh_path: str,
                     gaga_track_type: str):
        source_size = self.cfg.source_size
        render_size = self.cfg.render_size
        # render_views = self.cfg.render_views
        render_fps = self.cfg.render_fps
        # mesh_size = self.cfg.mesh_size
        # mesh_thres = self.cfg.mesh_thres
        # frame_size = self.cfg.frame_size
        # source_cam_dist = self.cfg.source_cam_dist if source_cam_dist is None else source_cam_dist
        aspect_standard = 1.0/1.0
        motion_img_need_mask = self.cfg.get("motion_img_need_mask", False)  # False
        vis_motion = self.cfg.get("vis_motion", False)  # False
        save_ply = self.cfg.get("save_ply", False)  # False
        save_img = self.cfg.get("save_img", False)  # False
        # mask_path = image_path.replace("/images/", "/mask/").replace(".png", ".jpg")
        rendered_bg = 1.
        ref_bg = 1.
        mask_path = image_path.replace("/images/", "/fg_masks/").replace(".jpg", ".png")
        if ref_bg < 1.:
            if "VFHQ_TEST" in image_path:
                mask_path = image_path.replace("/VFHQ_TEST/", "/mask/").replace("/images/", "/mask/").replace(".png", ".jpg")
            else:
                mask_path = image_path.replace("/vfhq_test_nooffset_export/", "/mask/").replace("/images/", "/mask/").replace(".png", ".jpg")
        if not os.path.exists(mask_path):
            print("Warning: Mask path not exists:", mask_path)
            mask_path = None
        else:
            print("load mask from:", mask_path)

        # prepare reference image
        if "hdtf" in image_path:
            uid = image_path.split('/')[-3]
            split0 = uid.replace(uid.split('_')[-1], '0')
            print("==="*16*3, "\n"+image_path, uid, split0)
            image_path = image_path.replace(uid, split0)
            mask_path = mask_path.replace(uid, split0)
            print(image_path, "\n"+"==="*16*3)
            print(mask_path, "\n"+"==="*16*3)
        if hasattr(self.cfg.model, "use_albedo_input") and (self.cfg.model.get("use_albedo_input", False)):
            image_path = image_path.replace("/images/", "/images_hydelight/")
        image, _, _, shape_param = preprocess_image(image_path, mask_path=mask_path, intr=None, pad_ratio=0, bg_color=ref_bg, 
                                             max_tgt_size=None, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1.0],
                                             render_tgt_size=source_size, multiply=14, need_mask=True, get_shape_param=True)
        # save masked image for vis
        save_ref_img_path = os.path.join(dump_tmp_dir, "refer_" + os.path.basename(image_path))
        vis_ref_img = (image[0].permute(1, 2 ,0).cpu().detach().numpy() * 255).astype(np.uint8)
        Image.fromarray(vis_ref_img).save(save_ref_img_path)
        # prepare motion seq
        test_sample=self.cfg.get("test_sample", True)
        # test_sample=True
        if gaga_track_type == "":
            print("==="*16*3, "\nuse vhap tracked results!", "\n"+"==="*16*3)
            src = image_path.split('/')[-3]
            driven = motion_seqs_dir.split('/')[-2]
            src_driven = [src, driven]
            motion_seq = prepare_motion_seqs(motion_seqs_dir, motion_img_dir, save_root=dump_tmp_dir, fps=motion_video_read_fps,
                                                bg_color=rendered_bg, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1,0],
                                                render_image_res=render_size,  multiply=16, 
                                                need_mask=motion_img_need_mask, vis_motion=vis_motion, 
                                                shape_param=shape_param, test_sample=test_sample, cross_id=self.cfg.get("cross_id", False), src_driven=src_driven)
        else:
            print("==="*16*3, "\nuse gaga tracked results:", gaga_track_type, "\n"+"==="*16*3)
            motion_seq = prepare_gaga_motion_seqs(motion_seqs_dir, motion_img_dir, save_root=dump_tmp_dir, fps=motion_video_read_fps,
                                                bg_color=rendered_bg, aspect_standard=aspect_standard, enlarge_ratio=[1.0, 1,0],
                                                render_image_res=render_size,  multiply=16, 
                                                need_mask=motion_img_need_mask, vis_motion=vis_motion, 
                                                shape_param=shape_param, test_sample=test_sample, gaga_track_type=gaga_track_type)

        # return

        motion_seq["flame_params"]["betas"] = shape_param.unsqueeze(0)
        # print(motion_seq["flame_params"].keys())
        start_time = time.time()
        device="cuda"
        dtype=torch.float32
        # dtype=torch.bfloat16
        self.model.to(dtype)
        print("start to inference...................")
        with torch.no_grad():
            # TODO check device and dtype
            res = self.model.infer_single_view(image.unsqueeze(0).to(device, dtype), None, None, 
                                               render_c2ws=motion_seq["render_c2ws"].to(device),
                                               render_intrs=motion_seq["render_intrs"].to(device),
                                               render_bg_colors=motion_seq["render_bg_colors"].to(device),
                                               flame_params={k:v.to(device) for k, v in motion_seq["flame_params"].items()})

        print(f"time elapsed: {time.time() - start_time}")
        rgb = res["comp_rgb"].detach().cpu().numpy()  # [Nv, H, W, 3], 0-1
        rgb = (np.clip(rgb, 0, 1.0) * 255).astype(np.uint8)
        only_pred = rgb
        if vis_motion:
            # print(rgb.shape, motion_seq["vis_motion_render"].shape)
            import cv2
            vis_ref_img = np.tile(cv2.resize(vis_ref_img, (rgb[0].shape[1], rgb[0].shape[0]), interpolation=cv2.INTER_AREA)[None, :, :, :], (rgb.shape[0], 1, 1, 1))
            blend_ratio = 0.7
            blend_res = ((1 -  blend_ratio) * rgb + blend_ratio * motion_seq["vis_motion_render"]).astype(np.uint8)
            # rgb = np.concatenate([rgb, motion_seq["vis_motion_render"], blend_res, vis_ref_img], axis=2)
            rgb = np.concatenate([vis_ref_img, rgb, motion_seq["vis_motion_render"]], axis=2)
            
        os.makedirs(os.path.dirname(dump_video_path), exist_ok=True)
        # images_to_video(rgb, output_path=dump_video_path, fps=render_fps, gradio_codec=False, verbose=True)
        self.save_imgs_2_video(rgb, dump_video_path, render_fps)
        if save_img and dump_image_dir is not None:
            for i in range(rgb.shape[0]):
                save_file = os.path.join(dump_image_dir, f"{i:04d}.png")
                Image.fromarray(only_pred[i]).save(save_file)
                if save_ply and dump_mesh_path is not None:
                    res["3dgs"][i][0][0].save_ply(os.path.join(dump_image_dir, f"{i:04d}.ply"))

            dump_cano_dir = "./exps/cano_gs/"
            if not os.path.exists(dump_cano_dir):
                os.system(f"mkdir -p {dump_cano_dir}")
            cano_ply_pth = os.path.join(dump_cano_dir, os.path.basename(dump_image_dir) + ".ply")
            # res['cano_gs_lst'][0].save_ply(cano_ply_pth, rgb2sh=True, offset2xyz=False)
            # res['cano_gs_lst'][0].save_ply(cano_ply_pth, rgb2sh=True, offset2xyz=False, albedo2rgb=True)
            cano_ply_pth = os.path.join(dump_cano_dir, os.path.basename(dump_image_dir) + "_gs_offset.ply")
            res['cano_gs_lst'][0].save_ply(cano_ply_pth, rgb2sh=False, offset2xyz=True, albedo2rgb=False)
            # res['cano_gs_lst'][0].save_ply(cano_ply_pth, rgb2sh=False, offset2xyz=True)

            def save_color_points(points, colors, sv_pth, sv_fd="debug_vis/dataloader/"):
                points = points.squeeze().detach().cpu().numpy()
                colors = colors.squeeze().detach().cpu().numpy()
                sv_pth = os.path.join(sv_fd, sv_pth)
                if not os.path.exists(sv_fd):
                    os.system(f"mkdir -p {sv_fd}")
                with open(sv_pth, 'w') as of:
                    for point, color in zip(points, colors):
                        print('v', point[0], point[1], point[2], color[0], color[1], color[2], file=of)
 
            # save canonical color point clouds
            save_color_points(res['cano_gs_lst'][0].xyz, res["cano_gs_lst"][0].shs[:, 0, :], "framework_img.obj", sv_fd=dump_cano_dir) 

            # Export the template mesh to an OBJ file
            import trimesh
            vtxs = res['cano_gs_lst'][0].xyz - res['cano_gs_lst'][0].offset
            vtxs = vtxs.detach().cpu().numpy() 
            faces = self.model.renderer.flame_model.faces.detach().cpu().numpy()
            mesh = trimesh.Trimesh(vertices=vtxs, faces=faces)
            mesh.export(os.path.join(dump_cano_dir, os.path.basename(dump_image_dir) + '_shaped_mesh.obj'))

            # Export textured deformed mesh
            import lam.models.rendering.utils.mesh_utils as mesh_utils
            vtxs = res['cano_gs_lst'][0].xyz.detach().cpu()
            faces = self.model.renderer.flame_model.faces.detach().cpu()
            colors = res['cano_gs_lst'][0].shs.squeeze(1).detach().cpu()
            pth = os.path.join(dump_cano_dir, os.path.basename(dump_image_dir) + '_textured_mesh.obj')
            print("Save textured mesh to:", pth)
            mesh_utils.save_obj(pth, vtxs, faces, textures=colors, texture_type="vertex")

        # if dum_mesh_path is not None:
        #     for idx, gs in enumerate(res["3dgs"]):
        #         gs.save_ply(f"{:04d}.ply")

    def infer(self):
        image_paths = []
        # hard code
        if os.path.isfile(self.cfg.image_input):
            omit_prefix = os.path.dirname(self.cfg.image_input)
            image_paths = [self.cfg.image_input]
        else:
            # ids = sorted(os.listdir(self.cfg.image_input))
            # image_paths = [os.path.join(self.cfg.image_input, e, "images/00000_00.png") for e in ids]
            image_paths = glob(os.path.join(self.cfg.image_input, "*.jpg"))
            omit_prefix = self.cfg.image_input

        """
        # image_paths = glob("train_data/demo_export/DEMOVIDEO/*/images/00000_00.png")
        image_paths = glob("train_data/vfhq_test/VFHQ_TEST/Clip+G0DGRma_p48+P0+C0+F11208-11383/images/00000_00.png")
        image_paths = glob("train_data/SIDE_FACE/*/images/00000_00.png")
        image_paths = glob("train_data/vfhq_test/VFHQ_TEST/*/images/00000_00.png")

        import json
        # uids = json.load(open("./train_data/vfhq_vhap/selected_id.json", 'r'))["self_id"]
        # image_paths = [os.path.join("train_data/vfhq_test/VFHQ_TEST/", uid, "images/00000_00.png") for uid in uids]
        image_paths = glob("train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png")
        # image_paths = glob("train_data/nersemble_vhap/export/017_SEN-01-cramp_small_danger_v16_DS4_whiteBg_staticOffset_maskBelowLine/images/00000_00.png")
        # image_paths = glob("train_data/nersemble_vhap/export/374_SEN-01-cramp_small_danger_v16_DS4_whiteBg_staticOffset_maskBelowLine/images/00000_00.png")
        image_paths = glob("train_data/nersemble_vhap/export/375_SEN-01-cramp_small_danger_v16_DS4_whiteBg_staticOffset_maskBelowLine/images/00000_00.png")

        image_paths = glob("train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png")
        """

        # image_paths = glob("train_data/hdtf_test/export/*/images/00000_00.png")

        image_paths = glob("train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png")  # [0:1]

        # image_paths = glob("train_data/vfhq_test/VFHQ_TEST/*/images/00000_00.png")
        print(len(image_paths), image_paths)

        # image_paths = ["train_data/vfhq_test/VFHQ_TEST/Clip+VjvX4tzzlbo+P2+C0+F5669-5935/images/00000_00.png"]
        # image_paths = ["train_data/vfhq_test/VFHQ_TEST/Clip+KSF3tPr9zAk+P0+C2+F8769-8880/images/00000_00.png"]
        image_paths = ["train_data/vfhq_test/VFHQ_TEST/Clip+G0DGRma_p48+P0+C0+F11208-11383/images/00000_00.png"]

        image_paths = glob("train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png")

        uids = ['Clip+1qf8dZpLED0+P2+C1+F5731-5855', 'Clip+8vcxTHoDadk+P3+C0+F27918-28036', 'Clip+gsHu2fb3aj0+P0+C0+F17563-17742']
        image_paths = ["train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png".replace("*", item) for item in uids]

        image_paths = glob("train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png")

        image_paths = glob("train_data/vfhq_test/vfhq_test_nooffset_export/*/images/00000_00.png")
        
        image_paths = glob("train_data/test_2w_cases/*/images/00000_00.png")

        # if os.path.isfile(self.cfg.image_input):
        #     omit_prefix = os.path.dirname(self.cfg.image_input)
        #     image_paths.append(self.cfg.image_input)
        # else:
        #     omit_prefix = self.cfg.image_input
        #     suffixes = ('.jpg', '.jpeg', '.png', '.webp')
        #     for root, dirs, files in os.walk(self.cfg.image_input):
        #         for file in files:
        #             if file.endswith(suffixes):
        #                 image_paths.append(os.path.join(root, file))
        #     image_paths.sort()

        # alloc to each DDP worker
        # image_paths = image_paths[self.accelerator.process_index::self.accelerator.num_processes]
        if "hdtf" in image_paths[0]:
            image_paths = image_paths[self.cfg.get("rank", 0)::self.cfg.get("nodes", 1)]

        gaga_track_type = self.cfg.get("gaga_track_type", "")
        if gaga_track_type is None:
            gaga_track_type = ""
        print("==="*16*3, "\nUse gaga_track_type:", gaga_track_type, "\n"+"==="*16*3)

        if self.cfg.get("cross_id", False):
            import json
            cross_id_lst = json.load(open("train_data/Cross-identity-info.json", 'r'))
            src2driven = {item["src"]: item["driven"] for item in cross_id_lst}

        for image_path in tqdm(image_paths, disable=not self.accelerator.is_local_main_process):
            try:
                # self.cfg.motion_seqs_dir = image_path.replace("/images/00000_00.png", "/flame_param")
                motion_seqs_dir = self.cfg.motion_seqs_dir
                if "VFHQ_TEST" in image_path or "vfhq_test_nooffset_export" in image_path or "hdtf" in image_path:
                    motion_seqs_dir = os.path.join(*image_path.split('/')[:-2], "flame_param")
                    # read shape_param
                    if self.cfg.get("cross_id", False):
                        src = motion_seqs_dir.split('/')[-2]
                        driven = src2driven[src]
                        motion_seqs_dir = motion_seqs_dir.replace(src, driven)

                print("motion_seqs_dir:", motion_seqs_dir)
                # prepare dump paths
                image_name = os.path.basename(image_path)
                uid = image_name.split('.')[0]
                subdir_path = os.path.dirname(image_path).replace(omit_prefix, '')
                subdir_path = subdir_path[1:] if subdir_path.startswith('/') else subdir_path
                # hard code
                subdir_path = gaga_track_type
                if self.cfg.get("cross_id", False):
                    subdir_path = "cross_id"
                    print("==="*16*3, "\n"+ "subdir_path:", subdir_path, "\n"+"==="*16*3)
                uid = os.path.basename(os.path.dirname(os.path.dirname(image_path)))
                print("subdir_path and uid:", subdir_path, uid)
                dump_video_path = os.path.join(
                    self.cfg.video_dump,
                    subdir_path,
                    f'{uid}.mp4',
                )
                dump_image_dir = os.path.join(
                    self.cfg.image_dump,
                    subdir_path,
                    f'{uid}'
                )
                dump_tmp_dir = os.path.join(
                    self.cfg.image_dump,
                    subdir_path,
                    "tmp_res"
                )
                dump_mesh_path = os.path.join(
                    self.cfg.mesh_dump,
                    subdir_path,
                    # f'{uid}.ply',
                )
                os.makedirs(dump_image_dir, exist_ok=True)
                os.makedirs(dump_tmp_dir, exist_ok=True)
                os.makedirs(dump_mesh_path, exist_ok=True)

                # if os.path.exists(dump_video_path):
                #     print(f"skip:{image_path}")
                #     continue

                self.infer_single(
                    image_path,
                    motion_seqs_dir=motion_seqs_dir,
                    motion_img_dir=self.cfg.motion_img_dir,
                    motion_video_read_fps=self.cfg.motion_video_read_fps,
                    export_video=self.cfg.export_video,
                    export_mesh=self.cfg.export_mesh, 
                    dump_tmp_dir=dump_tmp_dir,
                    dump_image_dir=dump_image_dir,
                    dump_video_path=dump_video_path, 
                    dump_mesh_path=dump_mesh_path,
                    gaga_track_type=gaga_track_type
                    )
            except:
                traceback.print_exc()