Spaces:
Veein
/
Runtime error

File size: 7,841 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import glob
import json
import os.path as osp
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
import seaborn as sns
from pandas import DataFrame
import pandas as pd


def L2(p1, p2):
    return np.linalg.norm(p1 - p2)


def NME(landmarks_gt, landmarks_pv):
    pts_num = landmarks_gt.shape[0]
    if pts_num == 29:
        left_index = 16
        right_index = 17
    elif pts_num == 68:
        left_index = 36
        right_index = 45
    elif pts_num == 98:
        left_index = 60
        right_index = 72

    nme = 0
    eye_span = L2(landmarks_gt[left_index], landmarks_gt[right_index])
    nmeList = []
    for i in range(pts_num):
        error = L2(landmarks_pv[i], landmarks_gt[i])
        _nme = error / eye_span
        nmeList.append(_nme)
        nme += _nme
    nme /= pts_num
    return nme, nmeList


def NME_analysis(listA):
    for jsonA in listA:
        pred = np.array(jsonA['pred'])
        gt = np.array(jsonA['gt'])
        nme, nmeList = NME(gt, pred)
        jsonA['nme'] = nme
        jsonA['nmeList'] = nmeList
    return listA


def nme_analysis(listA):
    bdy_nmeList = []
    scene_nmeList = []
    for jsonA in tqdm(listA):
        nme = jsonA['nmeList']
        nme = np.array(nme)
        bdy_nme = np.mean(nme[:33])
        scene_nme = np.mean(nme[33:])
        # scene_nme = np.mean(nme[[33, 35, 40, 38,
        #                          60, 62, 96, 66, 64,
        #                          50, 44, 48, 46,
        #                          68, 70, 97, 74, 72,
        #                          54, 55, 57, 59,
        #                          76, 82, 79, 90, 94, 85, 16]])
        bdy_nmeList.append(bdy_nme)
        scene_nmeList.append(scene_nme)
    print('bdy nme: {:.4f}'.format(np.mean(bdy_nmeList)))
    print('scene_nmeList: {:.4f}'.format(np.mean(scene_nmeList)))


def Energy_analysis(listA, easyThresh=0.02, easyNum=10, hardThresh=0.07, hardNum=10):
    easyDict = {'energy': [], 'nme': []}
    hardDict = {'energy': [], 'nme': []}

    _easyNum, _hardNum = 0, 0

    def cal_energy(evalues):
        evalues = np.array(evalues)
        # _energy = _energy.max(1)
        eccentricity = evalues.max(1) / evalues.min(1)
        # _energy = _energy.sum() / 2
        _energy = np.mean(eccentricity)
        return _energy

    for jsonA in tqdm(listA):
        nme = jsonA['nme']
        evalues = jsonA['evalues']

        if _easyNum == easyNum and _hardNum == hardNum:
            break

        if nme < easyThresh and _easyNum < easyNum:
            energy = cal_energy(evalues)
            easyDict['energy'].append(energy)
            easyDict['nme'].append(nme)
            _easyNum += 1
        elif nme > hardThresh and _hardNum < hardNum:
            energy = cal_energy(evalues)
            hardDict['energy'].append(energy)
            hardDict['nme'].append(nme)
            _hardNum += 1

    print('easyThresh: < {}; hardThresh > {}'.format(easyThresh, hardThresh))
    print('              |nme    |energy |num |')
    print('easy samples: |{:.4f} |{:.4f} |{} |'.format(np.mean(easyDict['nme']),
                                                       np.mean(easyDict['energy']),
                                                       len(easyDict['energy'])))
    print('hard samples: |{:.4f} |{:.4f} |{} |'.format(np.mean(hardDict['nme']),
                                                       np.mean(hardDict['energy']),
                                                       len(hardDict['energy'])))

    return easyDict, hardDict


def Eccentricity_analysis(listA):
    eyecornerList = []
    boundaryList = []
    for jsonA in listA:
        evalues = np.array(jsonA['evalues'])
        eccentricity = evalues.max(1) / evalues.min(1)

        eyecorner = np.mean(eccentricity[[60, 64, 68, 72]])
        boundary = np.mean(eccentricity[0:33])
        eyecornerList.append(eyecorner)
        boundaryList.append(boundary)

    print('eyecorner: {:.4f}'.format(np.mean(eyecornerList)))
    print('boundary:  {:.4f}'.format(np.mean(boundaryList)))
    return eyecornerList, boundaryList


def plot_bar(dataList):
    x = list(range(98))
    assert len(x) == len(dataList)
    _x = 'Landmark Index'
    # _y = 'elliptical eccentricity (λ1/λ2)'
    _y = 'PCA Analyze (λ1/λ2)'
    data = {
        _x: x,
        _y: dataList
    }
    df = DataFrame(data)
    plt.figure(figsize=(10, 4))
    sns.barplot(x=_x, y=_y, data=df)
    plt.show()


def Eccentricity_analysis2(listA, is_vis=False):
    landmarksList = [[] for i in range(98)]
    for jsonA in listA:
        evalues = np.array(jsonA['evalues'])
        eccentricity = evalues.max(1) / evalues.min(1)
        for i, e in enumerate(eccentricity):
            landmarksList[i].append(e)
    print('Mean value: {:.4f}'.format(np.mean(np.array(landmarksList))))
    landmarksList = [np.mean(l) for l in landmarksList]
    if is_vis:
        plot_bar(landmarksList)
    return landmarksList


def std_analysis2():
    save_dir = '/apdcephfs/share_1134483/charlinzhou/experiment/cvpr-23/wflw_results'
    # l2_npy = glob.glob(osp.join(save_dir, '*DSNT*.npy'))
    l2_npy = glob.glob(osp.join(save_dir, '*MHNLoss_v2_l2*.npy'))

    def npy2std(npyList):
        datas = [np.load(npy)[np.newaxis, :] for npy in npyList]
        datas = np.concatenate(datas, axis=0)
        # denormalization
        datas = (datas + 1) * 256 / 2
        mean = datas.mean(axis=0)[np.newaxis, :]
        dist = np.linalg.norm(datas - mean, axis=-1)
        std = np.std(dist, 0)
        print('min: {}, max:{}, mean:{}'.format(std.min(), std.max(), std.mean()))
        return std

    std1 = npy2std(l2_npy)
    std1 = std1.mean(0)
    # plot_bar(std1)
    bdy_std = np.mean(std1[:33])
    cofw_std = np.mean(std1[[33, 35, 40, 38,
                             60, 62, 96, 66, 64,
                             50, 44, 48, 46,
                             68, 70, 97, 74, 72,
                             54, 55, 57, 59,
                             76, 82, 79, 90, 94, 85, 16]])
    print('bdy_std: {:.4f}, cofw_std: {:.4f}'.format(bdy_std, cofw_std))
    print('the ratio of Boundary std and ALL std: {:.4f} / {:.4f}'.format(np.sum(std1[:33]), np.sum(std1)))


if __name__ == '__main__':
    # 4.29模型
    json_path = '/apdcephfs/share_1134483/charlinzhou/ckpts/STAR/WFLW/WFLW_256x256_adam_ep500_lr0.001_bs128_STARLoss_smoothl1_1_b0183746-161a-4b76-9cb9-8a2059090233/results.json'
    # 无初始化
    # json_path = '/apdcephfs/share_1134483/charlinzhou/ckpts/STAR/WFLW/WFLW_256x256_adam_ep500_lr0.001_bs128_STARLoss_smoothl1_1_9cff3656-8ca8-4c3d-a95d-da76f9f76ea5/results.json'
    # 4.02模型
    # json_path = '/apdcephfs/share_1134483/charlinzhou/ckpts/STAR/WFLW/WFLW_256x256_adam_ep500_lr0.001_bs128_STARLoss_smoothl1_1_AAM_2d2bb70e-6fdb-459c-baf7-18c89e7a165f/results.json'
    listA = json.load(open(json_path, 'r'))
    print('Load Done!')
    listA = NME_analysis(listA)
    print('NME analysis Done!')
    # Exp1: 分析简单样本和困难样本的能量差异
    easyDict, hardDict = Energy_analysis(listA, easyNum=2500, hardNum=2500, easyThresh=0.03, hardThresh=0.08)

    # Exp2.1: 分析眼角点和轮廓点的斜率差异
    # eyecornerList, boundaryList = Eccentricity_analysis(listA)

    # Exp2.2: 可视化所有点的斜率分布
    # landmarksList = Eccentricity_analysis2(listA, is_vis=True)

    # Exp2.3: 可视化所有点的方差分布
    # std_analysis2()

    # Exp3: 五官和轮廓NME分析
    # nme_analysis(listA)
    # print(easyDict)
    # print(hardDict)

    # nmeList = [jsonA['nme'] for jsonA in listA]
    # print(len(nmeList))