Spaces:
Veein
/
Runtime error

File size: 7,373 Bytes
17cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
import seaborn as sns


def get_channel_sum(input):
    """

        Generates the sum of each channel of the input

        input  = batch_size x 68 x 64 x 64

        output = batch_size x 68

    """
    temp = torch.sum(input, dim=3)
    output = torch.sum(temp, dim=2)

    return output


def expand_two_dimensions_at_end(input, dim1, dim2):
    """

        Adds two more dimensions to the end of the input

        input = batch_size x 68

        output= batch_size x 68 x dim1 x dim2

    """
    input = input.unsqueeze(-1).unsqueeze(-1)
    input = input.expand(-1, -1, dim1, dim2)

    return input


class Distribution(object):
    def __init__(self, heatmaps, num_dim_dist=2, EPSILON=1e-5, is_normalize=True):
        self.heatmaps = heatmaps
        self.num_dim_dist = num_dim_dist
        self.EPSILON = EPSILON
        self.is_normalize = is_normalize
        batch, npoints, h, w = heatmaps.shape
        # normalize
        heatmap_sum = torch.clamp(heatmaps.sum([2, 3]), min=1e-6)
        self.heatmaps = heatmaps / heatmap_sum.view(batch, npoints, 1, 1)

        # means [batch_size x 68 x 2]
        self.mean = self.get_spatial_mean(self.heatmaps)
        # covars [batch_size x 68 x 2 x 2]
        self.covars = self.get_covariance_matrix(self.heatmaps, self.mean)

        _covars = self.covars.view(batch * npoints, 2, 2).cpu()
        evalues, evectors = _covars.symeig(eigenvectors=True)
        # eigenvalues [batch_size x 68 x 2]
        self.evalues = evalues.view(batch, npoints, 2).to(heatmaps)
        # eignvectors [batch_size x 68 x 2 x 2]
        self.evectors = evectors.view(batch, npoints, 2, 2).to(heatmaps)

    def __repr__(self):
        return "Distribution()"

    def plot(self, heatmap, mean, evalues, evectors):
        # heatmap is not normalized
        plt.figure(0)
        if heatmap.is_cuda:
            heatmap, mean = heatmap.cpu(), mean.cpu()
            evalues, evectors = evalues.cpu(), evectors.cpu()
        sns.heatmap(heatmap, cmap="RdBu_r")
        for evalue, evector in zip(evalues, evectors):
            plt.arrow(mean[0], mean[1], evalue * evector[0], evalue * evector[1],
                      width=0.2, shape="full")
        plt.show()

    def easy_plot(self, index):
        # index = (num of batch_size, num of num_points)
        num_bs, num_p = index
        heatmap = self.heatmaps[num_bs, num_p]
        mean = self.mean[num_bs, num_p]
        evalues = self.evalues[num_bs, num_p]
        evectors = self.evectors[num_bs, num_p]
        self.plot(heatmap, mean, evalues, evectors)

    def project_and_scale(self, pts, eigenvalues, eigenvectors):
        batch_size, npoints, _ = pts.shape
        proj_pts = torch.matmul(pts.view(batch_size, npoints, 1, 2), eigenvectors)
        scale_proj_pts = proj_pts.view(batch_size, npoints, 2) / torch.sqrt(eigenvalues)
        return scale_proj_pts

    def _make_grid(self, h, w):
        if self.is_normalize:
            yy, xx = torch.meshgrid(
                torch.arange(h).float() / (h - 1) * 2 - 1,
                torch.arange(w).float() / (w - 1) * 2 - 1)
        else:
            yy, xx = torch.meshgrid(
                torch.arange(h).float(),
                torch.arange(w).float()
            )

        return yy, xx

    def get_spatial_mean(self, heatmap):
        batch, npoints, h, w = heatmap.shape

        yy, xx = self._make_grid(h, w)
        yy = yy.view(1, 1, h, w).to(heatmap)
        xx = xx.view(1, 1, h, w).to(heatmap)

        yy_coord = (yy * heatmap).sum([2, 3])  # batch x npoints
        xx_coord = (xx * heatmap).sum([2, 3])  # batch x npoints
        coords = torch.stack([xx_coord, yy_coord], dim=-1)
        return coords

    def get_covariance_matrix(self, htp, means):
        """

            Covariance calculation from the normalized heatmaps

            Reference https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_covariance

            The unbiased estimate is given by

            Unbiased covariance =

                  ___

                  \

                  /__ w_i (x_i - \mu_i)^T (x_i - \mu_i)



              ___________________________________________



                            V_1 - (V_2/V_1)



                        ___                 ___

                        \                   \

            where V_1 = /__ w_i   and V_2 = /__ w_i^2





            Input:

                htp =        batch_size x 68 x 64 x 64

                means =      batch_size x 68 x 2



            Output:

                covariance = batch_size x 68 x 2 x 2

        """
        batch_size = htp.shape[0]
        num_points = htp.shape[1]
        height = htp.shape[2]
        width = htp.shape[3]

        yv, xv = self._make_grid(height, width)
        xv = Variable(xv)
        yv = Variable(yv)

        if htp.is_cuda:
            xv = xv.cuda()
            yv = yv.cuda()

        xmean = means[:, :, 0]
        xv_minus_mean = xv.expand(batch_size, num_points, -1, -1) - expand_two_dimensions_at_end(xmean, height,
                                                                                                 width)  # batch_size x 68 x 64 x 64
        ymean = means[:, :, 1]
        yv_minus_mean = yv.expand(batch_size, num_points, -1, -1) - expand_two_dimensions_at_end(ymean, height,
                                                                                                 width)  # batch_size x 68 x 64 x 64

        # These are the unweighted versions
        wt_xv_minus_mean = xv_minus_mean
        wt_yv_minus_mean = yv_minus_mean

        wt_xv_minus_mean = wt_xv_minus_mean.view(batch_size * num_points, height * width)  # batch_size*68 x 4096
        wt_xv_minus_mean = wt_xv_minus_mean.view(batch_size * num_points, 1,
                                                 height * width)  # batch_size*68 x 1    x 4096
        wt_yv_minus_mean = wt_yv_minus_mean.view(batch_size * num_points, height * width)  # batch_size*68 x 4096
        wt_yv_minus_mean = wt_yv_minus_mean.view(batch_size * num_points, 1,
                                                 height * width)  # batch_size*68 x 1    x 4096
        vec_concat = torch.cat((wt_xv_minus_mean, wt_yv_minus_mean), 1)  # batch_size*68 x 2    x 4096

        htp_vec = htp.view(batch_size * num_points, 1, height * width)
        htp_vec = htp_vec.expand(-1, 2, -1)

        # Torch batch matrix multiplication
        # https://pytorch.org/docs/stable/torch.html#torch.bmm
        # Also use the heatmap as the weights at one place now
        covariance = torch.bmm(htp_vec * vec_concat, vec_concat.transpose(1, 2))  # batch_size*68 x 2    x 2
        covariance = covariance.view(batch_size, num_points, self.num_dim_dist,
                                     self.num_dim_dist)  # batch_size    x 68   x 2   x 2

        V_1 = get_channel_sum(htp) + self.EPSILON  # batch_size x 68
        V_2 = get_channel_sum(torch.pow(htp, 2))  # batch_size x 68
        denominator = V_1 - (V_2 / V_1)

        covariance = covariance / expand_two_dimensions_at_end(denominator, self.num_dim_dist, self.num_dim_dist)

        return (covariance)