|
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] |
|
import os |
|
|
|
import gradio as gr |
|
import pandas as pd |
|
import json |
|
import tempfile |
|
|
|
from constants import * |
|
from huggingface_hub import Repository |
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
global data_component, filter_component |
|
|
|
|
|
def upload_file(files): |
|
file_paths = [file.name for file in files] |
|
return file_paths |
|
|
|
def add_new_eval( |
|
input_file, |
|
model_name_textbox: str, |
|
revision_name_textbox: str, |
|
model_link: str, |
|
): |
|
if input_file is None: |
|
return "Error! Empty file!" |
|
|
|
upload_data=json.loads(input_file) |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
shutil.copyfile(CSV_DIR, os.path.join(SUBMISSION_NAME, f"{input_file}")) |
|
|
|
csv_data = pd.read_csv(CSV_DIR) |
|
|
|
if revision_name_textbox == '': |
|
col = csv_data.shape[0] |
|
model_name = model_name_textbox |
|
else: |
|
model_name = revision_name_textbox |
|
model_name_list = csv_data['name'] |
|
name_list = [name.split(']')[0][1:] for name in model_name_list] |
|
if revision_name_textbox not in name_list: |
|
col = csv_data.shape[0] |
|
else: |
|
col = name_list.index(revision_name_textbox) |
|
|
|
if model_link == '': |
|
model_name = model_name |
|
else: |
|
model_name = '[' + model_name + '](' + model_link + ')' |
|
|
|
|
|
new_data = [ |
|
model_name |
|
] |
|
for key in TASK_INFO: |
|
if key in upload_data: |
|
new_data.append(upload_data[key][0]) |
|
else: |
|
new_data.append(0) |
|
csv_data.loc[col] = new_data |
|
csv_data = csv_data.to_csv(CSV_DIR, index=False) |
|
submission_repo.push_to_hub() |
|
return 0 |
|
|
|
def get_normalized_df(df): |
|
|
|
|
|
normalize_df = df.copy() |
|
for column in normalize_df.columns[1:]: |
|
min_val = NORMALIZE_DIC[column]['Min'] |
|
max_val = NORMALIZE_DIC[column]['Max'] |
|
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val) |
|
return normalize_df |
|
|
|
def calculate_selected_score(df, selected_columns): |
|
selected_score = df[selected_columns].sum(axis=1) |
|
return selected_score |
|
|
|
def get_final_score(df, selected_columns): |
|
normalize_df = get_normalized_df(df) |
|
|
|
for name in normalize_df.drop('name', axis=1): |
|
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] |
|
quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST]) |
|
semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ]) |
|
final_score = quality_score+ semantic_score |
|
if 'Overall Score' in df: |
|
df['Overall Score'] = final_score |
|
else: |
|
df.insert(1, 'Overall Score', final_score) |
|
final_score = quality_score+ semantic_score |
|
if 'Semantic Score' in df: |
|
df['Semantic Score'] = semantic_score |
|
else: |
|
df.insert(2, 'Semantic Score', semantic_score) |
|
if 'Quality Score' in df: |
|
df['Quality Score'] = quality_score |
|
else: |
|
df.insert(3, 'Quality Score', quality_score) |
|
selected_score = calculate_selected_score(normalize_df, selected_columns) |
|
if 'Selected Score' in df: |
|
df['Selected Score'] = selected_score |
|
else: |
|
df.insert(1, 'Selected Score', selected_score) |
|
return df |
|
|
|
def get_baseline_df(): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(CSV_DIR) |
|
df = get_final_score(df, checkbox_group.value) |
|
df = df.sort_values(by="Total Score", ascending=False) |
|
present_columns = MODEL_INFO + checkbox_group.value |
|
df = df[present_columns] |
|
df = convert_scores_to_percentage(df) |
|
return df |
|
|
|
def get_all_df(selected_columns): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(CSV_DIR) |
|
df = get_final_score(df, selected_columns) |
|
df = df.sort_values(by="Total Score", ascending=False) |
|
return df |
|
|
|
def convert_scores_to_percentage(df): |
|
|
|
for column in df.columns[1:]: |
|
df[column] = round(df[column] * 100,2) |
|
df[column] = df[column].astype(str) + '%' |
|
return df |
|
|
|
|
|
def on_filter_model_size_method_change(selected_columns): |
|
updated_data = get_all_df(selected_columns) |
|
print(updated_data) |
|
|
|
selected_columns = [item for item in TASK_INFO if item in selected_columns] |
|
present_columns = MODEL_INFO + selected_columns |
|
updated_data = updated_data[present_columns] |
|
updated_data = updated_data.sort_values(by="Total Score", ascending=False) |
|
updated_data = convert_scores_to_percentage(updated_data) |
|
updated_headers = present_columns |
|
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] |
|
|
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
return filter_component |
|
|
|
block = gr.Blocks() |
|
|
|
|
|
with block: |
|
gr.Markdown( |
|
LEADERBORAD_INTRODUCTION |
|
) |
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("📊 VBench", elem_id="vbench-tab-table", id=1): |
|
with gr.Row(): |
|
with gr.Accordion("Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
lines=10, |
|
) |
|
|
|
gr.Markdown( |
|
TABLE_INTRODUCTION |
|
) |
|
|
|
|
|
checkbox_group = gr.CheckboxGroup( |
|
choices=TASK_INFO, |
|
value=DEFAULT_INFO, |
|
label="Evaluation Dimension", |
|
interactive=True, |
|
) |
|
|
|
data_component = gr.components.Dataframe( |
|
value=get_baseline_df, |
|
headers=COLUMN_NAMES, |
|
type="pandas", |
|
datatype=DATA_TITILE_TYPE, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
|
|
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component) |
|
|
|
|
|
with gr.TabItem("📝 About", elem_id="mvbench-tab-table", id=2): |
|
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("🚀 Submit here! ", elem_id="mvbench-tab-table", id=3): |
|
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox( |
|
label="Model name", placeholder="LaVie" |
|
) |
|
revision_name_textbox = gr.Textbox( |
|
label="Revision Model Name", placeholder="LaVie" |
|
) |
|
|
|
with gr.Column(): |
|
model_link = gr.Textbox( |
|
label="Model Link", placeholder="https://huggingface.co/decapoda-research/llama-7b-hf" |
|
) |
|
|
|
|
|
with gr.Column(): |
|
|
|
input_file = gr.components.File(label = "Click to Upload a json File", file_count="single", type='binary') |
|
submit_button = gr.Button("Submit Eval") |
|
|
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
inputs = [ |
|
input_file, |
|
model_name_textbox, |
|
revision_name_textbox, |
|
model_link, |
|
], |
|
) |
|
|
|
|
|
def refresh_data(): |
|
value1 = get_baseline_df() |
|
return value1 |
|
|
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component) |
|
|
|
|
|
block.launch() |