|
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] |
|
import os |
|
import io |
|
import gradio as gr |
|
import pandas as pd |
|
import json |
|
import shutil |
|
import tempfile |
|
import datetime |
|
import zipfile |
|
|
|
|
|
from constants import * |
|
from huggingface_hub import Repository |
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
|
|
global data_component, filter_component |
|
|
|
|
|
def upload_file(files): |
|
file_paths = [file.name for file in files] |
|
return file_paths |
|
|
|
def add_new_eval( |
|
input_file, |
|
model_name_textbox: str, |
|
revision_name_textbox: str, |
|
model_link: str, |
|
): |
|
if input_file is None: |
|
return "Error! Empty file!" |
|
|
|
|
|
upload_content = input_file |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
filename = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") |
|
now = datetime.datetime.now() |
|
with open(f'{SUBMISSION_NAME}/{filename}.zip','wb') as f: |
|
f.write(input_file) |
|
|
|
|
|
csv_data = pd.read_csv(CSV_DIR) |
|
|
|
if revision_name_textbox == '': |
|
col = csv_data.shape[0] |
|
model_name = model_name_textbox |
|
else: |
|
model_name = revision_name_textbox |
|
model_name_list = csv_data['Model Name (clickable)'] |
|
name_list = [name.split(']')[0][1:] for name in model_name_list] |
|
if revision_name_textbox not in name_list: |
|
col = csv_data.shape[0] |
|
else: |
|
col = name_list.index(revision_name_textbox) |
|
|
|
if model_link == '': |
|
model_name = model_name |
|
else: |
|
model_name = '[' + model_name + '](' + model_link + ')' |
|
|
|
os.makedirs(filename, exist_ok=True) |
|
with zipfile.ZipFile(io.BytesIO(input_file), 'r') as zip_ref: |
|
zip_ref.extractall(filename) |
|
|
|
upload_data = {} |
|
for file in os.listdir(filename): |
|
with open(os.path.join(filename, file)) as ff: |
|
cur_json = json.load(ff) |
|
print(file, type(cur_json)) |
|
if isinstance(cur_json, dict): |
|
print(cur_json.keys()) |
|
for key in cur_json: |
|
upload_data[key.replace('_',' ')] = cur_json[key][0] |
|
print(f"{key}:{cur_json[key][0]}") |
|
|
|
new_data = [ |
|
model_name |
|
] |
|
for key in TASK_INFO: |
|
if key in upload_data: |
|
new_data.append(upload_data[key]) |
|
else: |
|
new_data.append(0) |
|
new_data.append("User Upload.") |
|
csv_data.loc[col] = new_data |
|
csv_data = csv_data.to_csv(CSV_DIR, index=False) |
|
submission_repo.push_to_hub() |
|
print("success update", model_name) |
|
return 0 |
|
|
|
def get_normalized_df(df): |
|
|
|
|
|
normalize_df = df.copy().fillna(0.0) |
|
for column in normalize_df.columns[1:-1]: |
|
min_val = NORMALIZE_DIC[column]['Min'] |
|
max_val = NORMALIZE_DIC[column]['Max'] |
|
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val) |
|
return normalize_df |
|
|
|
def get_normalized_i2v_df(df): |
|
normalize_df = df.copy().fillna(0.0) |
|
for column in normalize_df.columns[1:]: |
|
min_val = NORMALIZE_DIC_I2V[column]['Min'] |
|
max_val = NORMALIZE_DIC_I2V[column]['Max'] |
|
normalize_df[column] = (normalize_df[column] - min_val) / (max_val - min_val) |
|
return normalize_df |
|
|
|
|
|
def calculate_selected_score(df, selected_columns): |
|
|
|
selected_QUALITY = [i for i in selected_columns if i in QUALITY_LIST] |
|
selected_SEMANTIC = [i for i in selected_columns if i in SEMANTIC_LIST] |
|
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_QUALITY]) |
|
selected_semantic_score = df[selected_SEMANTIC].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_SEMANTIC ]) |
|
if selected_quality_score.isna().any().any() and selected_semantic_score.isna().any().any(): |
|
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) |
|
return selected_score.fillna(0.0) |
|
if selected_quality_score.isna().any().any(): |
|
return selected_semantic_score |
|
if selected_semantic_score.isna().any().any(): |
|
return selected_quality_score |
|
|
|
selected_score = (selected_quality_score * QUALITY_WEIGHT + selected_semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) |
|
return selected_score.fillna(0.0) |
|
|
|
def calculate_selected_score_i2v(df, selected_columns): |
|
|
|
selected_QUALITY = [i for i in selected_columns if i in I2V_QUALITY_LIST] |
|
selected_I2V = [i for i in selected_columns if i in I2V_LIST] |
|
selected_quality_score = df[selected_QUALITY].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_QUALITY]) |
|
selected_i2v_score = df[selected_I2V].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in selected_I2V ]) |
|
if selected_quality_score.isna().any().any() and selected_i2v_score.isna().any().any(): |
|
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) |
|
return selected_score.fillna(0.0) |
|
if selected_quality_score.isna().any().any(): |
|
return selected_i2v_score |
|
if selected_i2v_score.isna().any().any(): |
|
return selected_quality_score |
|
|
|
selected_score = (selected_quality_score * I2V_QUALITY_WEIGHT + selected_i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) |
|
return selected_score.fillna(0.0) |
|
|
|
def get_final_score(df, selected_columns): |
|
normalize_df = get_normalized_df(df) |
|
|
|
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop('Source', axis=1): |
|
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] |
|
quality_score = normalize_df[QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in QUALITY_LIST]) |
|
semantic_score = normalize_df[SEMANTIC_LIST].sum(axis=1)/sum([DIM_WEIGHT[i] for i in SEMANTIC_LIST ]) |
|
final_score = (quality_score * QUALITY_WEIGHT + semantic_score * SEMANTIC_WEIGHT) / (QUALITY_WEIGHT + SEMANTIC_WEIGHT) |
|
if 'Total Score' in df: |
|
df['Total Score'] = final_score |
|
else: |
|
df.insert(1, 'Total Score', final_score) |
|
if 'Semantic Score' in df: |
|
df['Semantic Score'] = semantic_score |
|
else: |
|
df.insert(2, 'Semantic Score', semantic_score) |
|
if 'Quality Score' in df: |
|
df['Quality Score'] = quality_score |
|
else: |
|
df.insert(3, 'Quality Score', quality_score) |
|
selected_score = calculate_selected_score(normalize_df, selected_columns) |
|
if 'Selected Score' in df: |
|
df['Selected Score'] = selected_score |
|
else: |
|
df.insert(1, 'Selected Score', selected_score) |
|
return df |
|
|
|
def get_final_score_i2v(df, selected_columns): |
|
normalize_df = get_normalized_i2v_df(df) |
|
|
|
for name in normalize_df.drop('Model Name (clickable)', axis=1).drop('Video-Text Camera Motion', axis=1): |
|
normalize_df[name] = normalize_df[name]*DIM_WEIGHT_I2V[name] |
|
quality_score = normalize_df[I2V_QUALITY_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_QUALITY_LIST]) |
|
i2v_score = normalize_df[I2V_LIST].sum(axis=1)/sum([DIM_WEIGHT_I2V[i] for i in I2V_LIST ]) |
|
final_score = (quality_score * I2V_QUALITY_WEIGHT + i2v_score * I2V_WEIGHT) / (I2V_QUALITY_WEIGHT + I2V_WEIGHT) |
|
if 'Total Score' in df: |
|
df['Total Score'] = final_score |
|
else: |
|
df.insert(1, 'Total Score', final_score) |
|
if 'I2V Score' in df: |
|
df['I2V Score'] = i2v_score |
|
else: |
|
df.insert(2, 'I2V Score', i2v_score) |
|
if 'Quality Score' in df: |
|
df['Quality Score'] = quality_score |
|
else: |
|
df.insert(3, 'Quality Score', quality_score) |
|
selected_score = calculate_selected_score_i2v(normalize_df, selected_columns) |
|
if 'Selected Score' in df: |
|
df['Selected Score'] = selected_score |
|
else: |
|
df.insert(1, 'Selected Score', selected_score) |
|
return df |
|
|
|
|
|
|
|
def get_final_score_quality(df, selected_columns): |
|
normalize_df = get_normalized_df(df) |
|
for name in normalize_df.drop('Model Name (clickable)', axis=1): |
|
normalize_df[name] = normalize_df[name]*DIM_WEIGHT[name] |
|
quality_score = normalize_df[QUALITY_TAB].sum(axis=1) / sum([DIM_WEIGHT[i] for i in QUALITY_TAB]) |
|
|
|
if 'Quality Score' in df: |
|
df['Quality Score'] = quality_score |
|
else: |
|
df.insert(1, 'Quality Score', quality_score) |
|
|
|
selected_score = normalize_df[selected_columns].sum(axis=1)/sum([DIM_WEIGHT[i] for i in selected_columns]) |
|
if 'Selected Score' in df: |
|
df['Selected Score'] = selected_score |
|
else: |
|
df.insert(1, 'Selected Score', selected_score) |
|
return df |
|
|
|
def get_baseline_df(): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(CSV_DIR) |
|
df = get_final_score(df, checkbox_group.value) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
present_columns = MODEL_INFO + checkbox_group.value |
|
df = df[present_columns] |
|
df = convert_scores_to_percentage(df) |
|
return df |
|
|
|
def get_baseline_df_quality(): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(QUALITY_DIR) |
|
df = get_final_score_quality(df, checkbox_group_quality.value) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
present_columns = MODEL_INFO_TAB_QUALITY + checkbox_group_quality.value |
|
df = df[present_columns] |
|
df = convert_scores_to_percentage(df) |
|
return df |
|
|
|
def get_baseline_df_i2v(): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(I2V_DIR) |
|
df = get_final_score_i2v(df, checkbox_group_i2v.value) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
present_columns = MODEL_INFO_TAB_I2V + checkbox_group_i2v.value |
|
df = df[present_columns] |
|
df = convert_scores_to_percentage(df) |
|
return df |
|
|
|
def get_all_df(selected_columns, dir=CSV_DIR): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(dir) |
|
df = get_final_score(df, selected_columns) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
return df |
|
|
|
def get_all_df_quality(selected_columns, dir=QUALITY_DIR): |
|
submission_repo = Repository(local_dir=SUBMISSION_NAME, clone_from=SUBMISSION_URL, use_auth_token=HF_TOKEN, repo_type="dataset") |
|
submission_repo.git_pull() |
|
df = pd.read_csv(dir) |
|
df = get_final_score_quality(df, selected_columns) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
return df |
|
|
|
def get_all_df_i2v(selected_columns, dir=I2V_DIR): |
|
|
|
|
|
df = pd.read_csv(dir) |
|
df = get_final_score_i2v(df, selected_columns) |
|
df = df.sort_values(by="Selected Score", ascending=False) |
|
return df |
|
|
|
def convert_scores_to_percentage(df): |
|
|
|
|
|
if 'Source' in df.columns: |
|
skip_col =2 |
|
else: |
|
skip_col =1 |
|
for column in df.columns[skip_col:]: |
|
df[column] = round(df[column] * 100,2) |
|
df[column] = df[column].astype(str) + '%' |
|
return df |
|
|
|
def choose_all_quailty(): |
|
return gr.update(value=QUALITY_LIST) |
|
|
|
def choose_all_semantic(): |
|
return gr.update(value=SEMANTIC_LIST) |
|
|
|
def disable_all(): |
|
return gr.update(value=[]) |
|
|
|
def enable_all(): |
|
return gr.update(value=TASK_INFO) |
|
|
|
def on_filter_model_size_method_change(selected_columns): |
|
updated_data = get_all_df(selected_columns, CSV_DIR) |
|
|
|
|
|
selected_columns = [item for item in TASK_INFO if item in selected_columns] |
|
present_columns = MODEL_INFO + selected_columns |
|
updated_data = updated_data[present_columns] |
|
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) |
|
updated_data = convert_scores_to_percentage(updated_data) |
|
updated_headers = present_columns |
|
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] |
|
|
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
return filter_component |
|
|
|
def on_filter_model_size_method_change_quality(selected_columns): |
|
updated_data = get_all_df_quality(selected_columns, QUALITY_DIR) |
|
|
|
|
|
selected_columns = [item for item in QUALITY_TAB if item in selected_columns] |
|
present_columns = MODEL_INFO_TAB_QUALITY + selected_columns |
|
updated_data = updated_data[present_columns] |
|
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) |
|
updated_data = convert_scores_to_percentage(updated_data) |
|
updated_headers = present_columns |
|
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES.index(x)] for x in updated_headers] |
|
|
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
return filter_component |
|
|
|
def on_filter_model_size_method_change_i2v(selected_columns): |
|
updated_data = get_all_df_i2v(selected_columns, I2V_DIR) |
|
selected_columns = [item for item in I2V_TAB if item in selected_columns] |
|
present_columns = MODEL_INFO_TAB_I2V + selected_columns |
|
updated_data = updated_data[present_columns] |
|
updated_data = updated_data.sort_values(by="Selected Score", ascending=False) |
|
updated_data = convert_scores_to_percentage(updated_data) |
|
updated_headers = present_columns |
|
update_datatype = [DATA_TITILE_TYPE[COLUMN_NAMES_I2V.index(x)] for x in updated_headers] |
|
|
|
filter_component = gr.components.Dataframe( |
|
value=updated_data, |
|
headers=updated_headers, |
|
type="pandas", |
|
datatype=update_datatype, |
|
interactive=False, |
|
visible=True, |
|
) |
|
return filter_component |
|
|
|
block = gr.Blocks() |
|
|
|
|
|
with block: |
|
gr.Markdown( |
|
LEADERBORAD_INTRODUCTION |
|
) |
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
|
|
with gr.TabItem("📊 VBench", elem_id="vbench-tab-table", id=1): |
|
with gr.Row(): |
|
with gr.Accordion("Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
lines=14, |
|
) |
|
|
|
gr.Markdown( |
|
TABLE_INTRODUCTION |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=0.2): |
|
choosen_q = gr.Button("Select Quality Dimensions") |
|
choosen_s = gr.Button("Select Semantic Dimensions") |
|
|
|
disable_b = gr.Button("Deselect All") |
|
|
|
with gr.Column(scale=0.8): |
|
|
|
checkbox_group = gr.CheckboxGroup( |
|
choices=TASK_INFO, |
|
value=DEFAULT_INFO, |
|
label="Evaluation Dimension", |
|
interactive=True, |
|
) |
|
|
|
data_component = gr.components.Dataframe( |
|
value=get_baseline_df, |
|
headers=COLUMN_NAMES, |
|
type="pandas", |
|
datatype=DATA_TITILE_TYPE, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
choosen_q.click(choose_all_quailty, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component) |
|
choosen_s.click(choose_all_semantic, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component) |
|
|
|
disable_b.click(disable_all, inputs=None, outputs=[checkbox_group]).then(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component) |
|
checkbox_group.change(fn=on_filter_model_size_method_change, inputs=[ checkbox_group], outputs=data_component) |
|
|
|
with gr.TabItem("Video Quaity", elem_id="vbench-tab-table", id=2): |
|
with gr.Accordion("INSTRUCTION", open=False): |
|
citation_button = gr.Textbox( |
|
value=QUALITY_CLAIM_TEXT, |
|
label="", |
|
elem_id="quality-button", |
|
lines=2, |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=1.0): |
|
|
|
checkbox_group_quality = gr.CheckboxGroup( |
|
choices=QUALITY_TAB, |
|
value=QUALITY_TAB, |
|
label="Evaluation Quality Dimension", |
|
interactive=True, |
|
) |
|
|
|
data_component_quality = gr.components.Dataframe( |
|
value=get_baseline_df_quality, |
|
headers=COLUMN_NAMES_QUALITY, |
|
type="pandas", |
|
datatype=DATA_TITILE_TYPE, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
checkbox_group_quality.change(fn=on_filter_model_size_method_change_quality, inputs=[checkbox_group_quality], outputs=data_component_quality) |
|
|
|
with gr.TabItem("VBench-I2V", elem_id="vbench-tab-table", id=3): |
|
with gr.Accordion("NOTE", open=False): |
|
i2v_note_button = gr.Textbox( |
|
value=I2V_CLAIM_TEXT, |
|
label="", |
|
elem_id="quality-button", |
|
lines=3, |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=1.0): |
|
|
|
checkbox_group_i2v = gr.CheckboxGroup( |
|
choices=I2V_TAB, |
|
value=I2V_TAB, |
|
label="Evaluation Quality Dimension", |
|
interactive=True, |
|
) |
|
|
|
data_component_i2v = gr.components.Dataframe( |
|
value=get_baseline_df_i2v, |
|
headers=COLUMN_NAMES_I2V, |
|
type="pandas", |
|
datatype=I2V_TITILE_TYPE, |
|
interactive=False, |
|
visible=True, |
|
) |
|
|
|
checkbox_group_i2v.change(fn=on_filter_model_size_method_change_i2v, inputs=[checkbox_group_i2v], outputs=data_component_i2v) |
|
|
|
|
|
with gr.TabItem("📝 About", elem_id="mvbench-tab-table", id=4): |
|
gr.Markdown(LEADERBORAD_INFO, elem_classes="markdown-text") |
|
|
|
|
|
with gr.TabItem("🚀 Submit here! ", elem_id="mvbench-tab-table", id=4): |
|
gr.Markdown(LEADERBORAD_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown(SUBMIT_INTRODUCTION, elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
gr.Markdown("# ✉️✨ Submit your model evaluation json file here!", elem_classes="markdown-text") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
model_name_textbox = gr.Textbox( |
|
label="Model name", placeholder="LaVie" |
|
) |
|
revision_name_textbox = gr.Textbox( |
|
label="Revision Model Name", placeholder="LaVie" |
|
) |
|
|
|
with gr.Column(): |
|
model_link = gr.Textbox( |
|
label="Model Link", placeholder="https://huggingface.co/decapoda-research/llama-7b-hf" |
|
) |
|
|
|
|
|
with gr.Column(): |
|
|
|
input_file = gr.components.File(label = "Click to Upload a json File", file_count="single", type='binary') |
|
submit_button = gr.Button("Submit Eval") |
|
|
|
submission_result = gr.Markdown() |
|
submit_button.click( |
|
add_new_eval, |
|
inputs = [ |
|
input_file, |
|
model_name_textbox, |
|
revision_name_textbox, |
|
model_link, |
|
], |
|
) |
|
|
|
|
|
def refresh_data(): |
|
value1 = get_baseline_df() |
|
return value1 |
|
|
|
with gr.Row(): |
|
data_run = gr.Button("Refresh") |
|
data_run.click(on_filter_model_size_method_change, inputs=[checkbox_group], outputs=data_component) |
|
|
|
|
|
block.launch() |