Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import torchvision as tv
|
5 |
+
import random, os
|
6 |
+
from diffusers import StableVideoDiffusionPipeline
|
7 |
+
from PIL import Image
|
8 |
+
from glob import glob
|
9 |
+
from typing import Optional
|
10 |
+
|
11 |
+
from tdd_svd_scheduler import TDDSVDStochasticIterativeScheduler
|
12 |
+
from utils import load_lora_weights, save_video
|
13 |
+
|
14 |
+
# LOCAL = True
|
15 |
+
LOCAL = False
|
16 |
+
|
17 |
+
if LOCAL:
|
18 |
+
svd_path = '/share2/duanyuxuan/diff_playground/diffusers_models/stable-video-diffusion-img2vid-xt-1-1'
|
19 |
+
lora_file_path = '/share2/duanyuxuan/diff_playground/SVD-TDD/svd-xt-1-1_tdd_lora_weights.safetensors'
|
20 |
+
else:
|
21 |
+
svd_path = 'stabilityai/stable-video-diffusion-img2vid-xt-1-1'
|
22 |
+
lora_repo_path = 'RED-AIGC/TDD'
|
23 |
+
lora_weight_name = 'svd-xt-1-1_tdd_lora_weights.safetensors'
|
24 |
+
|
25 |
+
if torch.cuda.is_available():
|
26 |
+
noise_scheduler = TDDSVDStochasticIterativeScheduler(num_train_timesteps = 250, sigma_min = 0.002, sigma_max = 700.0, sigma_data = 1.0,
|
27 |
+
s_noise = 1.0, rho = 7, clip_denoised = False)
|
28 |
+
|
29 |
+
pipeline = StableVideoDiffusionPipeline.from_pretrained(svd_path, scheduler = noise_scheduler, torch_dtype = torch.float16, variant = "fp16").to('cuda')
|
30 |
+
if LOCAL:
|
31 |
+
load_lora_weights(pipeline.unet, lora_file_path)
|
32 |
+
else:
|
33 |
+
load_lora_weights(pipeline.unet, lora_repo_path, weight_name = lora_weight_name)
|
34 |
+
|
35 |
+
max_64_bit_int = 2**63 - 1
|
36 |
+
|
37 |
+
@spaces.GPU
|
38 |
+
def sample(
|
39 |
+
image: Image,
|
40 |
+
seed: Optional[int] = 1,
|
41 |
+
randomize_seed: bool = False,
|
42 |
+
num_inference_steps: int = 4,
|
43 |
+
eta: float = 0.3,
|
44 |
+
min_guidance_scale: float = 1.0,
|
45 |
+
max_guidance_scale: float = 1.0,
|
46 |
+
fps: int = 7,
|
47 |
+
width: int = 512,
|
48 |
+
height: int = 512,
|
49 |
+
num_frames: int = 25,
|
50 |
+
motion_bucket_id: int = 127,
|
51 |
+
output_folder: str = "outputs_gradio",
|
52 |
+
):
|
53 |
+
pipeline.scheduler.set_eta(eta)
|
54 |
+
|
55 |
+
if randomize_seed:
|
56 |
+
seed = random.randint(0, max_64_bit_int)
|
57 |
+
generator = torch.manual_seed(seed)
|
58 |
+
|
59 |
+
os.makedirs(output_folder, exist_ok=True)
|
60 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
61 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
62 |
+
|
63 |
+
with torch.autocast("cuda"):
|
64 |
+
frames = pipeline(
|
65 |
+
image, height = height, width = width,
|
66 |
+
num_inference_steps = num_inference_steps,
|
67 |
+
min_guidance_scale = min_guidance_scale,
|
68 |
+
max_guidance_scale = max_guidance_scale,
|
69 |
+
num_frames = num_frames, fps = fps, motion_bucket_id = motion_bucket_id,
|
70 |
+
decode_chunk_size = 8,
|
71 |
+
noise_aug_strength = 0.02,
|
72 |
+
generator = generator,
|
73 |
+
).frames[0]
|
74 |
+
save_video(frames, video_path, fps = fps, quality = 5.0)
|
75 |
+
torch.manual_seed(seed)
|
76 |
+
|
77 |
+
return video_path, seed
|
78 |
+
|
79 |
+
|
80 |
+
def preprocess_image(image, height = 512, width = 512):
|
81 |
+
image = image.convert('RGB')
|
82 |
+
if image.size[0] != image.size[1]:
|
83 |
+
image = tv.transforms.functional.pil_to_tensor(image)
|
84 |
+
image = tv.transforms.functional.center_crop(image, min(image.shape[-2:]))
|
85 |
+
image = tv.transforms.functional.to_pil_image(image)
|
86 |
+
image = image.resize((width, height))
|
87 |
+
return image
|
88 |
+
|
89 |
+
css = """
|
90 |
+
h1 {
|
91 |
+
text-align: center;
|
92 |
+
display:block;
|
93 |
+
}
|
94 |
+
.gradio-container {
|
95 |
+
max-width: 70.5rem !important;
|
96 |
+
}
|
97 |
+
"""
|
98 |
+
|
99 |
+
with gr.Blocks(css = css) as demo:
|
100 |
+
gr.Markdown(
|
101 |
+
"""
|
102 |
+
# Stable Video Diffusion distilled by ✨Target-Driven Distillation✨
|
103 |
+
Target-Driven Distillation (TDD) is a state-of-the-art consistency distillation model that largely accelerates the inference processes of diffusion models. Using its delicate strategies of *target timestep selection* and *decoupled guidance*, models distilled by TDD can generated highly detailed images with only a few steps.
|
104 |
+
Besides, TDD is also available for distilling video generation models. This space presents TDD-distilled [SVD-xt 1.1](https://huggingface.co/stabilityai/stable-video-diffusion-img2vid-xt-1-1).
|
105 |
+
[**Project Page**](https://redaigc.github.io/TDD/) **|** [**Paper**](https://arxiv.org/abs/2409.01347) **|** [**Code**](https://github.com/RedAIGC/Target-Driven-Distillation) **|** [**Model**](https://huggingface.co/RED-AIGC/TDD) **|** [🤗 **TDD-SDXL Demo**](https://huggingface.co/spaces/RED-AIGC/TDD) **|** [🤗 **TDD-SVD Demo**](https://huggingface.co/spaces/RED-AIGC/SVD-TDD)
|
106 |
+
The codes of this space are built on [AnimateLCM-SVD](https://huggingface.co/spaces/wangfuyun/AnimateLCM-SVD) and we acknowledge their contribution.
|
107 |
+
"""
|
108 |
+
)
|
109 |
+
with gr.Row():
|
110 |
+
with gr.Column():
|
111 |
+
image = gr.Image(label="Upload your image", type="pil")
|
112 |
+
generate_btn = gr.Button("Generate")
|
113 |
+
video = gr.Video()
|
114 |
+
with gr.Accordion("Options", open = True):
|
115 |
+
seed = gr.Slider(
|
116 |
+
label="Seed",
|
117 |
+
value=1,
|
118 |
+
randomize=False,
|
119 |
+
minimum=0,
|
120 |
+
maximum=max_64_bit_int,
|
121 |
+
step=1,
|
122 |
+
)
|
123 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
124 |
+
min_guidance_scale = gr.Slider(
|
125 |
+
label="Min guidance scale",
|
126 |
+
info="min strength of classifier-free guidance",
|
127 |
+
value=1.0,
|
128 |
+
minimum=1.0,
|
129 |
+
maximum=1.5,
|
130 |
+
)
|
131 |
+
max_guidance_scale = gr.Slider(
|
132 |
+
label="Max guidance scale",
|
133 |
+
info="max strength of classifier-free guidance, it should not be less than Min guidance scale",
|
134 |
+
value=1.0,
|
135 |
+
minimum=1.0,
|
136 |
+
maximum=3.0,
|
137 |
+
)
|
138 |
+
num_inference_steps = gr.Slider(
|
139 |
+
label="Num inference steps",
|
140 |
+
info="steps for inference",
|
141 |
+
value=4,
|
142 |
+
minimum=4,
|
143 |
+
maximum=8,
|
144 |
+
step=1,
|
145 |
+
)
|
146 |
+
eta = gr.Slider(
|
147 |
+
label = "Eta",
|
148 |
+
info = "the value of gamma in gamma-sampling",
|
149 |
+
value = 0.3,
|
150 |
+
minimum = 0.0,
|
151 |
+
maximum = 1.0,
|
152 |
+
step = 0.1,
|
153 |
+
)
|
154 |
+
|
155 |
+
image.upload(fn = preprocess_image, inputs = image, outputs = image, queue = False)
|
156 |
+
generate_btn.click(
|
157 |
+
fn = sample,
|
158 |
+
inputs = [
|
159 |
+
image,
|
160 |
+
seed,
|
161 |
+
randomize_seed,
|
162 |
+
num_inference_steps,
|
163 |
+
eta,
|
164 |
+
min_guidance_scale,
|
165 |
+
max_guidance_scale,
|
166 |
+
],
|
167 |
+
outputs = [video, seed],
|
168 |
+
api_name = "video",
|
169 |
+
)
|
170 |
+
# safetensors_dropdown.change(fn=model_select, inputs=safetensors_dropdown)
|
171 |
+
|
172 |
+
# gr.Examples(
|
173 |
+
# examples=[
|
174 |
+
# ["examples/ipadapter_cat.jpg"],
|
175 |
+
# ],
|
176 |
+
# inputs=[image],
|
177 |
+
# outputs=[video, seed],
|
178 |
+
# fn=sample,
|
179 |
+
# cache_examples=True,
|
180 |
+
# )
|
181 |
+
|
182 |
+
if __name__ == "__main__":
|
183 |
+
if LOCAL:
|
184 |
+
demo.queue().launch(share=True, server_name='0.0.0.0')
|
185 |
+
else:
|
186 |
+
demo.queue(api_open=False).launch(show_api=False)
|