Spaces:
Sleeping
Sleeping
Update tasks/text.py
Browse files- tasks/text.py +59 -42
tasks/text.py
CHANGED
@@ -1,34 +1,70 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
-
import torch
|
3 |
from fastapi import APIRouter
|
4 |
from datetime import datetime
|
5 |
-
from datasets import
|
6 |
from sklearn.metrics import accuracy_score
|
7 |
-
|
8 |
-
from torch.utils.data import DataLoader, Dataset
|
9 |
-
import pandas as pd
|
10 |
-
from sklearn.preprocessing import LabelEncoder
|
11 |
|
12 |
from .utils.evaluation import TextEvaluationRequest
|
13 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
14 |
|
15 |
router = APIRouter()
|
16 |
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Assign device
|
26 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
-
model.to(device)
|
28 |
-
model.eval() # Set the model to evaluation mode
|
29 |
|
30 |
-
|
31 |
-
class TextDataset(Dataset):
|
32 |
def __init__(self, texts, labels, tokenizer, max_len=128):
|
33 |
self.texts = texts
|
34 |
self.labels = labels
|
@@ -54,7 +90,7 @@ class TextDataset(Dataset):
|
|
54 |
'labels': torch.tensor(label, dtype=torch.long)
|
55 |
}
|
56 |
|
57 |
-
@router.post(ROUTE, tags=["Text Task"],
|
58 |
description=DESCRIPTION)
|
59 |
async def evaluate_text(request: TextEvaluationRequest):
|
60 |
"""
|
@@ -82,30 +118,11 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
82 |
val_dataset = TextDataset(val_texts, val_labels, tokenizer)
|
83 |
val_loader = DataLoader(val_dataset, batch_size=32)
|
84 |
|
85 |
-
# Start tracking emissions
|
86 |
-
tracker.start()
|
87 |
-
tracker.start_task("inference")
|
88 |
-
|
89 |
-
#--------------------------------------------------------------------------------------------
|
90 |
-
# Fine-tuned BERT model inference
|
91 |
-
#--------------------------------------------------------------------------------------------
|
92 |
-
predictions = []
|
93 |
-
true_labels = val_labels.tolist()
|
94 |
-
|
95 |
-
with torch.no_grad():
|
96 |
-
for batch in val_loader:
|
97 |
-
input_ids = batch["input_ids"].to(device)
|
98 |
-
attention_mask = batch["attention_mask"].to(device)
|
99 |
-
|
100 |
-
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
101 |
-
logits = outputs.logits
|
102 |
-
batch_predictions = torch.argmax(logits, dim=1).cpu().tolist()
|
103 |
-
predictions.extend(batch_predictions)
|
104 |
-
|
105 |
-
#--------------------------------------------------------------------------------------------
|
106 |
-
# Fine-tuned BERT model inference stops here
|
107 |
#--------------------------------------------------------------------------------------------
|
|
|
|
|
108 |
|
|
|
109 |
# Stop tracking emissions
|
110 |
emissions_data = tracker.stop_task()
|
111 |
|
@@ -130,4 +147,4 @@ async def evaluate_text(request: TextEvaluationRequest):
|
|
130 |
}
|
131 |
}
|
132 |
|
133 |
-
return results
|
|
|
|
|
|
|
1 |
from fastapi import APIRouter
|
2 |
from datetime import datetime
|
3 |
+
from datasets import load_dataset
|
4 |
from sklearn.metrics import accuracy_score
|
5 |
+
import random
|
|
|
|
|
|
|
6 |
|
7 |
from .utils.evaluation import TextEvaluationRequest
|
8 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
9 |
|
10 |
router = APIRouter()
|
11 |
|
12 |
+
DESCRIPTION = "Evaluate text classification for climate disinformation detection"
|
13 |
+
ROUTE = "/text"
|
14 |
|
15 |
+
@router.post(ROUTE, tags=["Text Task"],
|
16 |
+
description=DESCRIPTION)
|
17 |
+
async def evaluate_text(request: TextEvaluationRequest):
|
18 |
+
"""
|
19 |
+
Evaluate text classification for climate disinformation detection.
|
20 |
+
|
21 |
+
Current Model: Random Baseline
|
22 |
+
- Makes random predictions from the label space (0-7)
|
23 |
+
- Used as a baseline for comparison
|
24 |
+
"""
|
25 |
+
# Get space info
|
26 |
+
username, space_url = get_space_info()
|
27 |
+
|
28 |
+
# Define the label mapping
|
29 |
+
LABEL_MAPPING = {
|
30 |
+
"0_not_relevant": 0,
|
31 |
+
"1_not_happening": 1,
|
32 |
+
"2_not_human": 2,
|
33 |
+
"3_not_bad": 3,
|
34 |
+
"4_solutions_harmful_unnecessary": 4,
|
35 |
+
"5_science_unreliable": 5,
|
36 |
+
"6_proponents_biased": 6,
|
37 |
+
"7_fossil_fuels_needed": 7
|
38 |
+
}
|
39 |
+
|
40 |
+
# Load and prepare the dataset
|
41 |
+
dataset = load_dataset(request.dataset_name)
|
42 |
+
|
43 |
+
# Convert string labels to integers
|
44 |
+
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
|
45 |
+
|
46 |
+
# Split dataset
|
47 |
+
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
|
48 |
+
test_dataset = train_test["test"]
|
49 |
+
|
50 |
+
# Start tracking emissions
|
51 |
+
tracker.start()
|
52 |
+
tracker.start_task("inference")
|
53 |
+
|
54 |
+
#--------------------------------------------------------------------------------------------
|
55 |
+
# YOUR MODEL INFERENCE CODE HERE
|
56 |
+
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
|
57 |
+
#--------------------------------------------------------------------------------------------
|
58 |
+
model_dir = "./" # Path to the fine-tuned BERT model directory
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
60 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_dir)
|
61 |
|
62 |
# Assign device
|
63 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
64 |
+
model.to(device)
|
65 |
+
model.eval() # Set the model to evaluation mode
|
66 |
|
67 |
+
class TextDataset(Dataset):
|
|
|
68 |
def __init__(self, texts, labels, tokenizer, max_len=128):
|
69 |
self.texts = texts
|
70 |
self.labels = labels
|
|
|
90 |
'labels': torch.tensor(label, dtype=torch.long)
|
91 |
}
|
92 |
|
93 |
+
@router.post(ROUTE, tags=["Text Task"],
|
94 |
description=DESCRIPTION)
|
95 |
async def evaluate_text(request: TextEvaluationRequest):
|
96 |
"""
|
|
|
118 |
val_dataset = TextDataset(val_texts, val_labels, tokenizer)
|
119 |
val_loader = DataLoader(val_dataset, batch_size=32)
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
#--------------------------------------------------------------------------------------------
|
122 |
+
# YOUR MODEL INFERENCE STOPS HERE
|
123 |
+
#--------------------------------------------------------------------------------------------
|
124 |
|
125 |
+
|
126 |
# Stop tracking emissions
|
127 |
emissions_data = tracker.stop_task()
|
128 |
|
|
|
147 |
}
|
148 |
}
|
149 |
|
150 |
+
return results
|