Spaces:
Runtime error
Runtime error
FlawedLLM
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,82 @@
|
|
1 |
-
import
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from unsloth import FastLanguageModel
|
3 |
|
|
|
|
|
4 |
|
5 |
+
if True:
|
6 |
+
from unsloth import FastLanguageModel
|
7 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
8 |
+
model_name = "FlawedLLM/BhashiniLLM", # YOUR MODEL YOU USED FOR TRAINING
|
9 |
+
max_seq_length = max_seq_length,
|
10 |
+
dtype = dtype,
|
11 |
+
load_in_4bit = load_in_4bit,
|
12 |
+
)
|
13 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
14 |
+
|
15 |
+
@spaces.GPU
|
16 |
+
def chunk_it(input_command):
|
17 |
+
inputs = tokenizer(
|
18 |
+
[
|
19 |
+
alpaca_prompt.format(
|
20 |
+
'''
|
21 |
+
You will receive text input that you need to analyze to perform the following tasks:
|
22 |
+
|
23 |
+
transaction: Record the details of an item transaction.
|
24 |
+
last n days transactions: Retrieve transaction records for a specified time period.
|
25 |
+
view risk inventory: View inventory items based on a risk category.
|
26 |
+
view inventory: View inventory details.
|
27 |
+
new items: Add new items to the inventory.
|
28 |
+
old items: View old items in inventory.
|
29 |
+
report generation: Generate various inventory reports.
|
30 |
+
Required Parameters:
|
31 |
+
|
32 |
+
Each task requires specific parameters to execute correctly:
|
33 |
+
|
34 |
+
transaction:
|
35 |
+
ItemName (string)
|
36 |
+
ItemQt (quantity - integer)
|
37 |
+
Flow (string: "in" or "out")
|
38 |
+
ShelfNo (string or integer)
|
39 |
+
last n days transactions:
|
40 |
+
ItemName (string)
|
41 |
+
Duration (integer: number of days, default: 30)
|
42 |
+
view risk inventory:
|
43 |
+
RiskType (string: "overstock", "understock", or Null for all risk types)
|
44 |
+
view inventory:
|
45 |
+
ItemName (string)
|
46 |
+
ShelfNo (string or integer)
|
47 |
+
new items:
|
48 |
+
ItemName (string)
|
49 |
+
SellingPrice (number)
|
50 |
+
CostPrice (number)
|
51 |
+
old items:
|
52 |
+
ShelfNo (string or integer)
|
53 |
+
report generation:
|
54 |
+
ItemName (string)
|
55 |
+
Duration (integer: number of days, default: 6)
|
56 |
+
ReportType (string: "profit", "revenue", "inventory", or Null for all reports)
|
57 |
+
|
58 |
+
ALWAYS provide output in a JSON format.''', # instruction
|
59 |
+
input_command, # input
|
60 |
+
"", # output - leave this blank for generation!
|
61 |
+
)
|
62 |
+
], return_tensors = "pt").to("cuda")
|
63 |
+
|
64 |
+
outputs = model.generate(**inputs, max_new_tokens = 216, use_cache = True)
|
65 |
+
tokenizer.batch_decode(outputs)
|
66 |
+
|
67 |
+
reply=tokenizer.batch_decode(outputs)
|
68 |
+
# Regular expression pattern to match content between "### Response:" and "<|end_of_text|>"
|
69 |
+
pattern = r"### Response:\n(.*?)<\|end_of_text\|>"
|
70 |
+
# Search for the pattern in the text
|
71 |
+
match = re.search(pattern, reply[0], re.DOTALL) # re.DOTALL allows '.' to match newlines
|
72 |
+
reply = match.group(1).strip() # Extract and remove extra whitespace
|
73 |
+
|
74 |
+
return reply
|
75 |
+
|
76 |
+
|
77 |
+
iface=gr.Interface(fn=chunk_it,
|
78 |
+
inputs="text",
|
79 |
+
outputs="text",
|
80 |
+
title="Formatter_Pro",
|
81 |
+
)
|
82 |
+
iface.launch(inline=False)
|