testing meta pure
Browse files
app.py
CHANGED
@@ -1,17 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
-
import json
|
3 |
-
import librosa
|
4 |
import os
|
5 |
-
import soundfile as sf
|
6 |
-
import tempfile
|
7 |
-
import uuid
|
8 |
-
import transformers
|
9 |
-
import torch
|
10 |
-
import time
|
11 |
import spaces
|
12 |
-
|
13 |
-
from nemo.collections.asr.models import ASRModel
|
14 |
-
|
15 |
from transformers import GemmaTokenizer, AutoModelForCausalLM
|
16 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
17 |
from threading import Thread
|
@@ -20,132 +9,53 @@ from threading import Thread
|
|
20 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
21 |
|
22 |
|
23 |
-
SAMPLE_RATE = 16000 # Hz
|
24 |
-
MAX_AUDIO_SECONDS = 40 # wont try to transcribe if longer than this
|
25 |
DESCRIPTION = '''
|
26 |
<div>
|
27 |
-
<h1 style=
|
28 |
-
<p
|
29 |
-
<p
|
30 |
-
<p
|
31 |
-
<p>Transcription and responses are limited to the English language.</p>
|
32 |
</div>
|
33 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
PLACEHOLDER = """
|
35 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
36 |
-
<img src="https://
|
37 |
-
<
|
|
|
38 |
</div>
|
39 |
"""
|
40 |
|
41 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
52 |
|
53 |
-
### LLM model
|
54 |
# Load the tokenizer and model
|
55 |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
56 |
-
|
57 |
terminators = [
|
58 |
tokenizer.eos_token_id,
|
59 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
60 |
]
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
Convert all files to monochannel 16 kHz wav files.
|
65 |
-
Do not convert and raise error if audio is too long.
|
66 |
-
Returns output filename and duration.
|
67 |
-
"""
|
68 |
-
|
69 |
-
data, sr = librosa.load(audio_filepath, sr=None, mono=True)
|
70 |
-
|
71 |
-
duration = librosa.get_duration(y=data, sr=sr)
|
72 |
-
|
73 |
-
if duration > MAX_AUDIO_SECONDS:
|
74 |
-
raise gr.Error(
|
75 |
-
f"This demo can transcribe up to {MAX_AUDIO_SECONDS} seconds of audio. "
|
76 |
-
"If you wish, you may trim the audio using the Audio viewer in Step 1 "
|
77 |
-
"(click on the scissors icon to start trimming audio)."
|
78 |
-
)
|
79 |
-
|
80 |
-
if sr != SAMPLE_RATE:
|
81 |
-
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE)
|
82 |
-
|
83 |
-
out_filename = os.path.join(tmpdir, utt_id + '.wav')
|
84 |
-
|
85 |
-
# save output audio
|
86 |
-
sf.write(out_filename, data, SAMPLE_RATE)
|
87 |
-
|
88 |
-
return out_filename, duration
|
89 |
-
|
90 |
-
def transcribe(audio_filepath):
|
91 |
-
"""
|
92 |
-
Transcribes a converted audio file.
|
93 |
-
Set to english language with punctuations.
|
94 |
-
Returns the output text.
|
95 |
-
"""
|
96 |
-
|
97 |
-
if audio_filepath is None:
|
98 |
-
raise gr.Error("Please provide some input audio: either upload an audio file or use the microphone")
|
99 |
-
|
100 |
-
utt_id = uuid.uuid4()
|
101 |
-
with tempfile.TemporaryDirectory() as tmpdir:
|
102 |
-
converted_audio_filepath, duration = convert_audio(audio_filepath, tmpdir, str(utt_id))
|
103 |
-
|
104 |
-
# make manifest file and save
|
105 |
-
manifest_data = {
|
106 |
-
"audio_filepath": converted_audio_filepath,
|
107 |
-
"source_lang": "en",
|
108 |
-
"target_lang": "en",
|
109 |
-
"taskname": "asr",
|
110 |
-
"pnc": "yes",
|
111 |
-
"answer": "predict",
|
112 |
-
"duration": str(duration),
|
113 |
-
}
|
114 |
-
|
115 |
-
manifest_filepath = os.path.join(tmpdir, f'{utt_id}.json')
|
116 |
-
|
117 |
-
with open(manifest_filepath, 'w') as fout:
|
118 |
-
line = json.dumps(manifest_data)
|
119 |
-
fout.write(line + '\n')
|
120 |
-
|
121 |
-
# call transcribe, passing in manifest filepath
|
122 |
-
output_text = canary_model.transcribe(manifest_filepath)[0]
|
123 |
-
|
124 |
-
return output_text
|
125 |
-
|
126 |
-
def add_message(history, message):
|
127 |
-
"""
|
128 |
-
Adds the input message in the chatbot.
|
129 |
-
Returns the updated chatbot with an empty input textbox.
|
130 |
-
"""
|
131 |
-
history.append((message, None))
|
132 |
-
return history
|
133 |
-
|
134 |
-
def bot(history,message):
|
135 |
-
"""
|
136 |
-
Prints the LLM's response in the chatbot
|
137 |
-
"""
|
138 |
-
response = bot_response(message, history, 0.7, 100)
|
139 |
-
#response = "bot_response(message)"
|
140 |
-
history[-1][1] = ""
|
141 |
-
for character in response:
|
142 |
-
history[-1][1] += character
|
143 |
-
time.sleep(0.05)
|
144 |
-
yield history
|
145 |
-
|
146 |
-
|
147 |
-
@spaces.GPU()
|
148 |
-
def bot_response(message: str,
|
149 |
history: list,
|
150 |
temperature: float,
|
151 |
max_new_tokens: int
|
@@ -165,7 +75,7 @@ def bot_response(message: str,
|
|
165 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
166 |
conversation.append({"role": "user", "content": message})
|
167 |
|
168 |
-
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(
|
169 |
|
170 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
171 |
|
@@ -181,68 +91,53 @@ def bot_response(message: str,
|
|
181 |
if temperature == 0:
|
182 |
generate_kwargs['do_sample'] = False
|
183 |
|
184 |
-
t = Thread(target=
|
185 |
t.start()
|
186 |
|
187 |
outputs = []
|
188 |
for text in streamer:
|
189 |
outputs.append(text)
|
|
|
|
|
|
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
with gr.Blocks(
|
195 |
-
title="MyAlexa",
|
196 |
-
css="""
|
197 |
-
textarea { font-size: 18px;}
|
198 |
-
""",
|
199 |
-
theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg) # make text slightly bigger (default is text_md )
|
200 |
-
) as demo:
|
201 |
-
|
202 |
-
gr.HTML(DESCRIPTION)
|
203 |
-
chatbot = gr.Chatbot(
|
204 |
-
[],
|
205 |
-
elem_id="chatbot",
|
206 |
-
bubble_full_width=False,
|
207 |
-
placeholder=PLACEHOLDER,
|
208 |
-
label='MyAlexa'
|
209 |
-
)
|
210 |
-
with gr.Row():
|
211 |
-
with gr.Column():
|
212 |
-
gr.HTML(
|
213 |
-
"<p><b>Step 1:</b> Upload an audio file or record with your microphone.</p>"
|
214 |
-
)
|
215 |
-
|
216 |
-
audio_file = gr.Audio(sources=["microphone", "upload"], type="filepath")
|
217 |
-
|
218 |
-
|
219 |
-
with gr.Column():
|
220 |
-
|
221 |
-
gr.HTML("<p><b>Step 2:</b> Enter audio as input and wait for MyAlexa's response.</p>")
|
222 |
-
|
223 |
-
submit_button = gr.Button(
|
224 |
-
value="Submit audio",
|
225 |
-
variant="primary"
|
226 |
-
)
|
227 |
-
|
228 |
-
chat_input = gr.Textbox(
|
229 |
-
label="Transcribed text:",
|
230 |
-
interactive=False,
|
231 |
-
placeholder="Enter message",
|
232 |
-
elem_id="chat_input",
|
233 |
-
visible=True
|
234 |
-
)
|
235 |
-
|
236 |
-
chat_msg = chat_input.change(add_message, [chatbot, chat_input], [chatbot])
|
237 |
-
bot_msg = chat_msg.then(bot, [chatbot, chat_input], chatbot, api_name="bot_response")
|
238 |
-
# bot_msg.then(lambda: gr.Textbox(interactive=False), None, [chat_input])
|
239 |
-
|
240 |
-
submit_button.click(
|
241 |
-
fn=transcribe,
|
242 |
-
inputs = [audio_file],
|
243 |
-
outputs = [chat_input]
|
244 |
-
)
|
245 |
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
if __name__ == "__main__":
|
248 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import spaces
|
|
|
|
|
|
|
4 |
from transformers import GemmaTokenizer, AutoModelForCausalLM
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
6 |
from threading import Thread
|
|
|
9 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
10 |
|
11 |
|
|
|
|
|
12 |
DESCRIPTION = '''
|
13 |
<div>
|
14 |
+
<h1 style="text-align: center;">Meta Llama3 8B</h1>
|
15 |
+
<p>This Space demonstrates the instruction-tuned model <a href="https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct"><b>Meta Llama3 8b Chat</b></a>. Meta Llama3 is the new open LLM and comes in two sizes: 8b and 70b. Feel free to play with it, or duplicate to run privately!</p>
|
16 |
+
<p>🔎 For more details about the Llama3 release and how to use the model with <code>transformers</code>, take a look <a href="https://huggingface.co/blog/llama3">at our blog post</a>.</p>
|
17 |
+
<p>🦕 Looking for an even more powerful model? Check out the <a href="https://huggingface.co/chat/"><b>Hugging Chat</b></a> integration for Meta Llama 3 70b</p>
|
|
|
18 |
</div>
|
19 |
'''
|
20 |
+
|
21 |
+
LICENSE = """
|
22 |
+
<p/>
|
23 |
+
---
|
24 |
+
Built with Meta Llama 3
|
25 |
+
"""
|
26 |
+
|
27 |
PLACEHOLDER = """
|
28 |
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
|
29 |
+
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
|
30 |
+
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
|
31 |
+
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
|
32 |
</div>
|
33 |
"""
|
34 |
|
|
|
35 |
|
36 |
+
css = """
|
37 |
+
h1 {
|
38 |
+
text-align: center;
|
39 |
+
display: block;
|
40 |
+
}
|
41 |
+
#duplicate-button {
|
42 |
+
margin: auto;
|
43 |
+
color: white;
|
44 |
+
background: #1565c0;
|
45 |
+
border-radius: 100vh;
|
46 |
+
}
|
47 |
+
"""
|
48 |
|
|
|
49 |
# Load the tokenizer and model
|
50 |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
|
51 |
+
model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", device_map="auto") # to("cuda:0")
|
52 |
terminators = [
|
53 |
tokenizer.eos_token_id,
|
54 |
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
55 |
]
|
56 |
|
57 |
+
@spaces.GPU(duration=120)
|
58 |
+
def chat_llama3_8b(message: str,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
history: list,
|
60 |
temperature: float,
|
61 |
max_new_tokens: int
|
|
|
75 |
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
76 |
conversation.append({"role": "user", "content": message})
|
77 |
|
78 |
+
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
79 |
|
80 |
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
|
81 |
|
|
|
91 |
if temperature == 0:
|
92 |
generate_kwargs['do_sample'] = False
|
93 |
|
94 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
95 |
t.start()
|
96 |
|
97 |
outputs = []
|
98 |
for text in streamer:
|
99 |
outputs.append(text)
|
100 |
+
#print(outputs)
|
101 |
+
yield "".join(outputs)
|
102 |
+
|
103 |
|
104 |
+
# Gradio block
|
105 |
+
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
with gr.Blocks(fill_height=True, css=css) as demo:
|
108 |
+
|
109 |
+
gr.Markdown(DESCRIPTION)
|
110 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
|
111 |
+
gr.ChatInterface(
|
112 |
+
fn=chat_llama3_8b,
|
113 |
+
chatbot=chatbot,
|
114 |
+
fill_height=True,
|
115 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
116 |
+
additional_inputs=[
|
117 |
+
gr.Slider(minimum=0,
|
118 |
+
maximum=1,
|
119 |
+
step=0.1,
|
120 |
+
value=0.95,
|
121 |
+
label="Temperature",
|
122 |
+
render=False),
|
123 |
+
gr.Slider(minimum=128,
|
124 |
+
maximum=4096,
|
125 |
+
step=1,
|
126 |
+
value=512,
|
127 |
+
label="Max new tokens",
|
128 |
+
render=False ),
|
129 |
+
],
|
130 |
+
examples=[
|
131 |
+
['How to setup a human base on Mars? Give short answer.'],
|
132 |
+
['Explain theory of relativity to me like I’m 8 years old.'],
|
133 |
+
['What is 9,000 * 9,000?'],
|
134 |
+
['Write a pun-filled happy birthday message to my friend Alex.'],
|
135 |
+
['Justify why a penguin might make a good king of the jungle.']
|
136 |
+
],
|
137 |
+
cache_examples=False,
|
138 |
+
)
|
139 |
+
|
140 |
+
gr.Markdown(LICENSE)
|
141 |
+
|
142 |
if __name__ == "__main__":
|
143 |
demo.launch()
|