openfree commited on
Commit
c54a5d7
·
verified ·
1 Parent(s): c4a0f5f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -110
app.py CHANGED
@@ -6,9 +6,11 @@ from pydub import AudioSegment
6
  import hashlib
7
  from sonic import Sonic
8
  from PIL import Image
9
- import torch
10
 
 
11
  # 모델 초기화
 
12
  cmd = (
13
  'python3 -m pip install "huggingface_hub[cli]"; '
14
  'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
@@ -19,175 +21,160 @@ os.system(cmd)
19
 
20
  pipe = Sonic()
21
 
 
 
 
22
  def get_md5(content):
 
23
  md5hash = hashlib.md5(content)
24
  return md5hash.hexdigest()
25
 
26
- @spaces.GPU(duration=300) # 긴 비디오 처리를 위해 duration 300초로 설정
 
 
 
27
  def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
28
- expand_ratio = 0.5
29
  min_resolution = 512
30
- inference_steps = 25 # 2초 분량의 비디오(25 프레임)로 고정
31
 
32
- # 오디오 길이(참고용) 출력
33
  audio = AudioSegment.from_file(audio_path)
34
- duration = len(audio) / 1000.0 # 초 단위
35
- print(f"Audio duration: {duration} seconds, using inference_steps: {inference_steps}")
 
 
 
36
 
 
37
  face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
38
  print(f"Face detection info: {face_info}")
 
 
39
 
40
- if face_info['face_num'] > 0:
41
- crop_image_path = img_path + '.crop.png'
42
- pipe.crop_image(img_path, crop_image_path, face_info['crop_bbox'])
43
- img_path = crop_image_path
44
- os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
45
-
46
- # 고정된 inference_steps(25)로 비디오 생성
47
- pipe.process(
48
- img_path,
49
- audio_path,
50
- res_video_path,
51
- min_resolution=min_resolution,
52
- inference_steps=inference_steps,
53
- dynamic_scale=dynamic_scale
54
- )
55
- return res_video_path
56
- else:
57
- return -1
58
 
59
- tmp_path = './tmp_path/'
60
- res_path = './res_path/'
 
 
 
61
  os.makedirs(tmp_path, exist_ok=True)
62
  os.makedirs(res_path, exist_ok=True)
63
 
 
 
 
64
  def process_sonic(image, audio, dynamic_scale):
65
  # 입력 검증
66
  if image is None:
67
  raise gr.Error("Please upload an image")
68
  if audio is None:
69
  raise gr.Error("Please upload an audio file")
70
-
71
  img_md5 = get_md5(np.array(image))
72
  audio_md5 = get_md5(audio[1])
73
- print(f"Processing with image hash: {img_md5}, audio hash: {audio_md5}")
74
-
 
75
  sampling_rate, arr = audio[:2]
76
- if len(arr.shape) == 1:
77
  arr = arr[:, None]
78
-
79
- # numpy array로부터 AudioSegment 생성
80
  audio_segment = AudioSegment(
81
  arr.tobytes(),
82
  frame_rate=sampling_rate,
83
  sample_width=arr.dtype.itemsize,
84
- channels=arr.shape[1]
85
  )
86
- audio_segment = audio_segment.set_frame_rate(sampling_rate)
87
-
88
- # 파일 경로 생성
89
- image_path = os.path.abspath(os.path.join(tmp_path, f'{img_md5}.png'))
90
- audio_path = os.path.abspath(os.path.join(tmp_path, f'{audio_md5}.wav'))
91
- res_video_path = os.path.abspath(os.path.join(res_path, f'{img_md5}_{audio_md5}_{dynamic_scale}.mp4'))
92
-
93
- # 입력 파일이 없으면 저장
 
94
  if not os.path.exists(image_path):
95
  image.save(image_path)
96
  if not os.path.exists(audio_path):
97
  audio_segment.export(audio_path, format="wav")
98
-
99
- # 캐시된 결과가 있으면 반환, 없으면 새로 생성
100
  if os.path.exists(res_video_path):
101
  print(f"Using cached result: {res_video_path}")
102
  return res_video_path
103
- else:
104
- print(f"Generating new video with dynamic scale: {dynamic_scale}")
105
- return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
106
 
107
- # 예시 데이터를 위한 dummy 함수 (필요시 실제 예시 데이터를 추가하세요)
 
 
 
 
 
108
  def get_example():
 
109
  return []
110
 
111
  css = """
112
- .gradio-container {
113
- font-family: 'Arial', sans-serif;
114
- }
115
- .main-header {
116
- text-align: center;
117
- color: #2a2a2a;
118
- margin-bottom: 2em;
119
- }
120
- .parameter-section {
121
- background-color: #f5f5f5;
122
- padding: 1em;
123
- border-radius: 8px;
124
- margin: 1em 0;
125
- }
126
- .example-section {
127
- margin-top: 2em;
128
- }
129
  """
130
 
131
- with gr.Blocks(css=css,theme="apriel") as demo:
132
- gr.HTML("""
 
133
  <div class="main-header">
134
- <h1>🎭 Sonic: Advanced Portrait Animation</h1>
135
- <p>Transform still images into dynamic videos synchronized with audio</p>
136
  </div>
137
- """)
138
-
 
139
  with gr.Row():
140
  with gr.Column():
141
- image_input = gr.Image(
142
- type='pil',
143
- label="Portrait Image",
144
- elem_id="image_input"
145
- )
146
-
147
- audio_input = gr.Audio(
148
- label="Voice/Audio Input",
149
- elem_id="audio_input",
150
- type="numpy"
151
  )
152
-
153
- with gr.Column():
154
- dynamic_scale = gr.Slider(
155
- minimum=0.5,
156
- maximum=2.0,
157
- value=1.0,
158
- step=0.1,
159
- label="Animation Intensity",
160
- info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
161
- )
162
-
163
- process_btn = gr.Button(
164
- "Generate Animation",
165
- variant="primary",
166
- elem_id="process_btn"
167
- )
168
-
169
  with gr.Column():
170
- video_output = gr.Video(
171
- label="Generated Animation",
172
- elem_id="video_output"
173
- )
174
-
175
  process_btn.click(
176
  fn=process_sonic,
177
  inputs=[image_input, audio_input, dynamic_scale],
178
  outputs=video_output,
179
- api_name="animate"
180
  )
181
-
182
  gr.Examples(
183
  examples=get_example(),
184
  fn=process_sonic,
185
  inputs=[image_input, audio_input, dynamic_scale],
186
  outputs=video_output,
187
- cache_examples=False
188
  )
189
-
190
-
191
 
192
- # 공개 링크 생성: share=True
193
- demo.launch(share=True)
 
 
 
6
  import hashlib
7
  from sonic import Sonic
8
  from PIL import Image
9
+ import torch # 필요 시 사용
10
 
11
+ # ------------------------------------------------------------------
12
  # 모델 초기화
13
+ # ------------------------------------------------------------------
14
  cmd = (
15
  'python3 -m pip install "huggingface_hub[cli]"; '
16
  'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
 
21
 
22
  pipe = Sonic()
23
 
24
+ # ------------------------------------------------------------------
25
+ # 유틸
26
+ # ------------------------------------------------------------------
27
  def get_md5(content):
28
+ """바이트/배열에서 md5 해시 문자열 반환"""
29
  md5hash = hashlib.md5(content)
30
  return md5hash.hexdigest()
31
 
32
+ # ------------------------------------------------------------------
33
+ # 비디오 생성
34
+ # ------------------------------------------------------------------
35
+ @spaces.GPU(duration=300) # 최대 5분까지 GPU 세션 유지
36
  def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
37
+ expand_ratio = 0.0 # ★ 얼굴 크롭 방지
38
  min_resolution = 512
 
39
 
40
+ # 오디오 길이 → 프레임 수 결정 (fps=25, 최대 60초=1500프레임)
41
  audio = AudioSegment.from_file(audio_path)
42
+ duration = len(audio) / 1000.0 # 초
43
+ fps = 25
44
+ max_steps = fps * 60 # 1500
45
+ inference_steps = max(1, min(int(duration * fps), max_steps))
46
+ print(f"Audio duration: {duration:.2f}s → inference_steps: {inference_steps}")
47
 
48
+ # 얼굴 정보는 참고용으로만 출력
49
  face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
50
  print(f"Face detection info: {face_info}")
51
+ if face_info["face_num"] == 0:
52
+ print("Warning: face not detected – proceeding with full image.")
53
 
54
+ # 출력 폴더 보장
55
+ os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
56
+
57
+ # 비디오 생성
58
+ pipe.process(
59
+ img_path,
60
+ audio_path,
61
+ res_video_path,
62
+ min_resolution=min_resolution,
63
+ inference_steps=inference_steps,
64
+ dynamic_scale=dynamic_scale,
65
+ )
66
+ return res_video_path
 
 
 
 
 
67
 
68
+ # ------------------------------------------------------------------
69
+ # 캐시·경로 설정
70
+ # ------------------------------------------------------------------
71
+ tmp_path = "./tmp_path/"
72
+ res_path = "./res_path/"
73
  os.makedirs(tmp_path, exist_ok=True)
74
  os.makedirs(res_path, exist_ok=True)
75
 
76
+ # ------------------------------------------------------------------
77
+ # Gradio 콜백
78
+ # ------------------------------------------------------------------
79
  def process_sonic(image, audio, dynamic_scale):
80
  # 입력 검증
81
  if image is None:
82
  raise gr.Error("Please upload an image")
83
  if audio is None:
84
  raise gr.Error("Please upload an audio file")
85
+
86
  img_md5 = get_md5(np.array(image))
87
  audio_md5 = get_md5(audio[1])
88
+ print(f"Processing (img={img_md5}, audio={audio_md5})")
89
+
90
+ # numpy 오디오 → AudioSegment
91
  sampling_rate, arr = audio[:2]
92
+ if arr.ndim == 1:
93
  arr = arr[:, None]
 
 
94
  audio_segment = AudioSegment(
95
  arr.tobytes(),
96
  frame_rate=sampling_rate,
97
  sample_width=arr.dtype.itemsize,
98
+ channels=arr.shape[1],
99
  )
100
+
101
+ # 경로
102
+ image_path = os.path.abspath(os.path.join(tmp_path, f"{img_md5}.png"))
103
+ audio_path = os.path.abspath(os.path.join(tmp_path, f"{audio_md5}.wav"))
104
+ res_video_path = os.path.abspath(
105
+ os.path.join(res_path, f"{img_md5}_{audio_md5}_{dynamic_scale}.mp4")
106
+ )
107
+
108
+ # 저장 / 캐시
109
  if not os.path.exists(image_path):
110
  image.save(image_path)
111
  if not os.path.exists(audio_path):
112
  audio_segment.export(audio_path, format="wav")
113
+
 
114
  if os.path.exists(res_video_path):
115
  print(f"Using cached result: {res_video_path}")
116
  return res_video_path
 
 
 
117
 
118
+ print(f"Generating new video (dynamic_scale={dynamic_scale})")
119
+ return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
120
+
121
+ # ------------------------------------------------------------------
122
+ # Gradio UI
123
+ # ------------------------------------------------------------------
124
  def get_example():
125
+ """예시 데이터 (필요 시 추가)"""
126
  return []
127
 
128
  css = """
129
+ .gradio-container { font-family: 'Arial', sans-serif; }
130
+ .main-header { text-align: center; color: #2a2a2a; margin-bottom: 2em; }
131
+ .parameter-section { background-color: #f5f5f5; padding: 1em; border-radius: 8px; margin: 1em 0; }
132
+ .example-section { margin-top: 2em; }
 
 
 
 
 
 
 
 
 
 
 
 
 
133
  """
134
 
135
+ with gr.Blocks(css=css, theme="apriel") as demo:
136
+ gr.HTML(
137
+ """
138
  <div class="main-header">
139
+ <h1>🎭 Longer Sonic: Advanced Portrait Animation</h1>
140
+ <p>Transform still images into dynamic videos synchronized with audio(Demo max 60sec)</p>
141
  </div>
142
+ """
143
+ )
144
+
145
  with gr.Row():
146
  with gr.Column():
147
+ image_input = gr.Image(type="pil", label="Portrait Image", elem_id="image_input")
148
+ audio_input = gr.Audio(label="Voice/Audio Input", elem_id="audio_input", type="numpy")
149
+ dynamic_scale = gr.Slider(
150
+ minimum=0.5,
151
+ maximum=2.0,
152
+ value=1.0,
153
+ step=0.1,
154
+ label="Animation Intensity",
155
+ info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)",
 
156
  )
157
+ process_btn = gr.Button("Generate Animation", variant="primary", elem_id="process_btn")
158
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
  with gr.Column():
160
+ video_output = gr.Video(label="Generated Animation", elem_id="video_output")
161
+
 
 
 
162
  process_btn.click(
163
  fn=process_sonic,
164
  inputs=[image_input, audio_input, dynamic_scale],
165
  outputs=video_output,
166
+ api_name="animate",
167
  )
168
+
169
  gr.Examples(
170
  examples=get_example(),
171
  fn=process_sonic,
172
  inputs=[image_input, audio_input, dynamic_scale],
173
  outputs=video_output,
174
+ cache_examples=False,
175
  )
 
 
176
 
177
+ # ------------------------------------------------------------------
178
+ # Launch
179
+ # ------------------------------------------------------------------
180
+ demo.launch(share=True)