Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,9 +6,11 @@ from pydub import AudioSegment
|
|
6 |
import hashlib
|
7 |
from sonic import Sonic
|
8 |
from PIL import Image
|
9 |
-
import torch
|
10 |
|
|
|
11 |
# 모델 초기화
|
|
|
12 |
cmd = (
|
13 |
'python3 -m pip install "huggingface_hub[cli]"; '
|
14 |
'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
|
@@ -19,175 +21,160 @@ os.system(cmd)
|
|
19 |
|
20 |
pipe = Sonic()
|
21 |
|
|
|
|
|
|
|
22 |
def get_md5(content):
|
|
|
23 |
md5hash = hashlib.md5(content)
|
24 |
return md5hash.hexdigest()
|
25 |
|
26 |
-
|
|
|
|
|
|
|
27 |
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
|
28 |
-
expand_ratio = 0.
|
29 |
min_resolution = 512
|
30 |
-
inference_steps = 25 # 2초 분량의 비디오(25 프레임)로 고정
|
31 |
|
32 |
-
# 오디오 길이(
|
33 |
audio = AudioSegment.from_file(audio_path)
|
34 |
-
duration = len(audio) / 1000.0 # 초
|
35 |
-
|
|
|
|
|
|
|
36 |
|
|
|
37 |
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
|
38 |
print(f"Face detection info: {face_info}")
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
dynamic_scale=dynamic_scale
|
54 |
-
)
|
55 |
-
return res_video_path
|
56 |
-
else:
|
57 |
-
return -1
|
58 |
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
os.makedirs(tmp_path, exist_ok=True)
|
62 |
os.makedirs(res_path, exist_ok=True)
|
63 |
|
|
|
|
|
|
|
64 |
def process_sonic(image, audio, dynamic_scale):
|
65 |
# 입력 검증
|
66 |
if image is None:
|
67 |
raise gr.Error("Please upload an image")
|
68 |
if audio is None:
|
69 |
raise gr.Error("Please upload an audio file")
|
70 |
-
|
71 |
img_md5 = get_md5(np.array(image))
|
72 |
audio_md5 = get_md5(audio[1])
|
73 |
-
print(f"Processing
|
74 |
-
|
|
|
75 |
sampling_rate, arr = audio[:2]
|
76 |
-
if
|
77 |
arr = arr[:, None]
|
78 |
-
|
79 |
-
# numpy array로부터 AudioSegment 생성
|
80 |
audio_segment = AudioSegment(
|
81 |
arr.tobytes(),
|
82 |
frame_rate=sampling_rate,
|
83 |
sample_width=arr.dtype.itemsize,
|
84 |
-
channels=arr.shape[1]
|
85 |
)
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
94 |
if not os.path.exists(image_path):
|
95 |
image.save(image_path)
|
96 |
if not os.path.exists(audio_path):
|
97 |
audio_segment.export(audio_path, format="wav")
|
98 |
-
|
99 |
-
# 캐시된 결과가 있으면 반환, 없으면 새로 생성
|
100 |
if os.path.exists(res_video_path):
|
101 |
print(f"Using cached result: {res_video_path}")
|
102 |
return res_video_path
|
103 |
-
else:
|
104 |
-
print(f"Generating new video with dynamic scale: {dynamic_scale}")
|
105 |
-
return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
|
106 |
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
108 |
def get_example():
|
|
|
109 |
return []
|
110 |
|
111 |
css = """
|
112 |
-
.gradio-container {
|
113 |
-
|
114 |
-
}
|
115 |
-
.
|
116 |
-
text-align: center;
|
117 |
-
color: #2a2a2a;
|
118 |
-
margin-bottom: 2em;
|
119 |
-
}
|
120 |
-
.parameter-section {
|
121 |
-
background-color: #f5f5f5;
|
122 |
-
padding: 1em;
|
123 |
-
border-radius: 8px;
|
124 |
-
margin: 1em 0;
|
125 |
-
}
|
126 |
-
.example-section {
|
127 |
-
margin-top: 2em;
|
128 |
-
}
|
129 |
"""
|
130 |
|
131 |
-
with gr.Blocks(css=css,theme="apriel") as demo:
|
132 |
-
gr.HTML(
|
|
|
133 |
<div class="main-header">
|
134 |
-
<h1>🎭 Sonic: Advanced Portrait Animation</h1>
|
135 |
-
<p>Transform still images into dynamic videos synchronized with audio</p>
|
136 |
</div>
|
137 |
-
|
138 |
-
|
|
|
139 |
with gr.Row():
|
140 |
with gr.Column():
|
141 |
-
image_input = gr.Image(
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
label="
|
149 |
-
|
150 |
-
type="numpy"
|
151 |
)
|
152 |
-
|
153 |
-
|
154 |
-
dynamic_scale = gr.Slider(
|
155 |
-
minimum=0.5,
|
156 |
-
maximum=2.0,
|
157 |
-
value=1.0,
|
158 |
-
step=0.1,
|
159 |
-
label="Animation Intensity",
|
160 |
-
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)"
|
161 |
-
)
|
162 |
-
|
163 |
-
process_btn = gr.Button(
|
164 |
-
"Generate Animation",
|
165 |
-
variant="primary",
|
166 |
-
elem_id="process_btn"
|
167 |
-
)
|
168 |
-
|
169 |
with gr.Column():
|
170 |
-
video_output = gr.Video(
|
171 |
-
|
172 |
-
elem_id="video_output"
|
173 |
-
)
|
174 |
-
|
175 |
process_btn.click(
|
176 |
fn=process_sonic,
|
177 |
inputs=[image_input, audio_input, dynamic_scale],
|
178 |
outputs=video_output,
|
179 |
-
api_name="animate"
|
180 |
)
|
181 |
-
|
182 |
gr.Examples(
|
183 |
examples=get_example(),
|
184 |
fn=process_sonic,
|
185 |
inputs=[image_input, audio_input, dynamic_scale],
|
186 |
outputs=video_output,
|
187 |
-
cache_examples=False
|
188 |
)
|
189 |
-
|
190 |
-
|
191 |
|
192 |
-
#
|
193 |
-
|
|
|
|
|
|
6 |
import hashlib
|
7 |
from sonic import Sonic
|
8 |
from PIL import Image
|
9 |
+
import torch # 필요 시 사용
|
10 |
|
11 |
+
# ------------------------------------------------------------------
|
12 |
# 모델 초기화
|
13 |
+
# ------------------------------------------------------------------
|
14 |
cmd = (
|
15 |
'python3 -m pip install "huggingface_hub[cli]"; '
|
16 |
'huggingface-cli download LeonJoe13/Sonic --local-dir checkpoints; '
|
|
|
21 |
|
22 |
pipe = Sonic()
|
23 |
|
24 |
+
# ------------------------------------------------------------------
|
25 |
+
# 유틸
|
26 |
+
# ------------------------------------------------------------------
|
27 |
def get_md5(content):
|
28 |
+
"""바이트/배열에서 md5 해시 문자열 반환"""
|
29 |
md5hash = hashlib.md5(content)
|
30 |
return md5hash.hexdigest()
|
31 |
|
32 |
+
# ------------------------------------------------------------------
|
33 |
+
# 비디오 생성
|
34 |
+
# ------------------------------------------------------------------
|
35 |
+
@spaces.GPU(duration=300) # 최대 5분까지 GPU 세션 유지
|
36 |
def get_video_res(img_path, audio_path, res_video_path, dynamic_scale=1.0):
|
37 |
+
expand_ratio = 0.0 # ★ 얼굴 크롭 방지
|
38 |
min_resolution = 512
|
|
|
39 |
|
40 |
+
# 오디오 길이 → 프레임 수 결정 (fps=25, 최대 60초=1500프레임)
|
41 |
audio = AudioSegment.from_file(audio_path)
|
42 |
+
duration = len(audio) / 1000.0 # 초
|
43 |
+
fps = 25
|
44 |
+
max_steps = fps * 60 # 1500
|
45 |
+
inference_steps = max(1, min(int(duration * fps), max_steps))
|
46 |
+
print(f"Audio duration: {duration:.2f}s → inference_steps: {inference_steps}")
|
47 |
|
48 |
+
# 얼굴 정보는 참고용으로만 출력
|
49 |
face_info = pipe.preprocess(img_path, expand_ratio=expand_ratio)
|
50 |
print(f"Face detection info: {face_info}")
|
51 |
+
if face_info["face_num"] == 0:
|
52 |
+
print("Warning: face not detected – proceeding with full image.")
|
53 |
|
54 |
+
# 출력 폴더 보장
|
55 |
+
os.makedirs(os.path.dirname(res_video_path), exist_ok=True)
|
56 |
+
|
57 |
+
# 비디오 생성
|
58 |
+
pipe.process(
|
59 |
+
img_path,
|
60 |
+
audio_path,
|
61 |
+
res_video_path,
|
62 |
+
min_resolution=min_resolution,
|
63 |
+
inference_steps=inference_steps,
|
64 |
+
dynamic_scale=dynamic_scale,
|
65 |
+
)
|
66 |
+
return res_video_path
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
# ------------------------------------------------------------------
|
69 |
+
# 캐시·경로 설정
|
70 |
+
# ------------------------------------------------------------------
|
71 |
+
tmp_path = "./tmp_path/"
|
72 |
+
res_path = "./res_path/"
|
73 |
os.makedirs(tmp_path, exist_ok=True)
|
74 |
os.makedirs(res_path, exist_ok=True)
|
75 |
|
76 |
+
# ------------------------------------------------------------------
|
77 |
+
# Gradio 콜백
|
78 |
+
# ------------------------------------------------------------------
|
79 |
def process_sonic(image, audio, dynamic_scale):
|
80 |
# 입력 검증
|
81 |
if image is None:
|
82 |
raise gr.Error("Please upload an image")
|
83 |
if audio is None:
|
84 |
raise gr.Error("Please upload an audio file")
|
85 |
+
|
86 |
img_md5 = get_md5(np.array(image))
|
87 |
audio_md5 = get_md5(audio[1])
|
88 |
+
print(f"Processing (img={img_md5}, audio={audio_md5})")
|
89 |
+
|
90 |
+
# numpy 오디오 → AudioSegment
|
91 |
sampling_rate, arr = audio[:2]
|
92 |
+
if arr.ndim == 1:
|
93 |
arr = arr[:, None]
|
|
|
|
|
94 |
audio_segment = AudioSegment(
|
95 |
arr.tobytes(),
|
96 |
frame_rate=sampling_rate,
|
97 |
sample_width=arr.dtype.itemsize,
|
98 |
+
channels=arr.shape[1],
|
99 |
)
|
100 |
+
|
101 |
+
# 경로
|
102 |
+
image_path = os.path.abspath(os.path.join(tmp_path, f"{img_md5}.png"))
|
103 |
+
audio_path = os.path.abspath(os.path.join(tmp_path, f"{audio_md5}.wav"))
|
104 |
+
res_video_path = os.path.abspath(
|
105 |
+
os.path.join(res_path, f"{img_md5}_{audio_md5}_{dynamic_scale}.mp4")
|
106 |
+
)
|
107 |
+
|
108 |
+
# 저장 / 캐시
|
109 |
if not os.path.exists(image_path):
|
110 |
image.save(image_path)
|
111 |
if not os.path.exists(audio_path):
|
112 |
audio_segment.export(audio_path, format="wav")
|
113 |
+
|
|
|
114 |
if os.path.exists(res_video_path):
|
115 |
print(f"Using cached result: {res_video_path}")
|
116 |
return res_video_path
|
|
|
|
|
|
|
117 |
|
118 |
+
print(f"Generating new video (dynamic_scale={dynamic_scale})")
|
119 |
+
return get_video_res(image_path, audio_path, res_video_path, dynamic_scale)
|
120 |
+
|
121 |
+
# ------------------------------------------------------------------
|
122 |
+
# Gradio UI
|
123 |
+
# ------------------------------------------------------------------
|
124 |
def get_example():
|
125 |
+
"""예시 데이터 (필요 시 추가)"""
|
126 |
return []
|
127 |
|
128 |
css = """
|
129 |
+
.gradio-container { font-family: 'Arial', sans-serif; }
|
130 |
+
.main-header { text-align: center; color: #2a2a2a; margin-bottom: 2em; }
|
131 |
+
.parameter-section { background-color: #f5f5f5; padding: 1em; border-radius: 8px; margin: 1em 0; }
|
132 |
+
.example-section { margin-top: 2em; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
"""
|
134 |
|
135 |
+
with gr.Blocks(css=css, theme="apriel") as demo:
|
136 |
+
gr.HTML(
|
137 |
+
"""
|
138 |
<div class="main-header">
|
139 |
+
<h1>🎭 Longer Sonic: Advanced Portrait Animation</h1>
|
140 |
+
<p>Transform still images into dynamic videos synchronized with audio(Demo max 60sec)</p>
|
141 |
</div>
|
142 |
+
"""
|
143 |
+
)
|
144 |
+
|
145 |
with gr.Row():
|
146 |
with gr.Column():
|
147 |
+
image_input = gr.Image(type="pil", label="Portrait Image", elem_id="image_input")
|
148 |
+
audio_input = gr.Audio(label="Voice/Audio Input", elem_id="audio_input", type="numpy")
|
149 |
+
dynamic_scale = gr.Slider(
|
150 |
+
minimum=0.5,
|
151 |
+
maximum=2.0,
|
152 |
+
value=1.0,
|
153 |
+
step=0.1,
|
154 |
+
label="Animation Intensity",
|
155 |
+
info="Adjust to control movement intensity (0.5: subtle, 2.0: dramatic)",
|
|
|
156 |
)
|
157 |
+
process_btn = gr.Button("Generate Animation", variant="primary", elem_id="process_btn")
|
158 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
with gr.Column():
|
160 |
+
video_output = gr.Video(label="Generated Animation", elem_id="video_output")
|
161 |
+
|
|
|
|
|
|
|
162 |
process_btn.click(
|
163 |
fn=process_sonic,
|
164 |
inputs=[image_input, audio_input, dynamic_scale],
|
165 |
outputs=video_output,
|
166 |
+
api_name="animate",
|
167 |
)
|
168 |
+
|
169 |
gr.Examples(
|
170 |
examples=get_example(),
|
171 |
fn=process_sonic,
|
172 |
inputs=[image_input, audio_input, dynamic_scale],
|
173 |
outputs=video_output,
|
174 |
+
cache_examples=False,
|
175 |
)
|
|
|
|
|
176 |
|
177 |
+
# ------------------------------------------------------------------
|
178 |
+
# Launch
|
179 |
+
# ------------------------------------------------------------------
|
180 |
+
demo.launch(share=True)
|