Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
import torch
|
4 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.nn as nn
|
7 |
+
import re
|
8 |
+
import requests
|
9 |
+
from urllib.parse import urlparse
|
10 |
+
import xml.etree.ElementTree as ET
|
11 |
+
|
12 |
+
##################################################
|
13 |
+
# Global setup
|
14 |
+
##################################################
|
15 |
+
model_path = "ssocean/NAIP"
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
|
18 |
+
model = None
|
19 |
+
tokenizer = None
|
20 |
+
|
21 |
+
##################################################
|
22 |
+
# Fetch paper info from arXiv
|
23 |
+
##################################################
|
24 |
+
def fetch_arxiv_paper(arxiv_input):
|
25 |
+
"""
|
26 |
+
Fetch paper title & abstract from an arXiv URL or ID.
|
27 |
+
"""
|
28 |
+
try:
|
29 |
+
if "arxiv.org" in arxiv_input:
|
30 |
+
parsed = urlparse(arxiv_input)
|
31 |
+
path = parsed.path
|
32 |
+
arxiv_id = path.split("/")[-1].replace(".pdf", "")
|
33 |
+
else:
|
34 |
+
arxiv_id = arxiv_input.strip()
|
35 |
+
|
36 |
+
api_url = f"http://export.arxiv.org/api/query?id_list={arxiv_id}"
|
37 |
+
resp = requests.get(api_url)
|
38 |
+
if resp.status_code != 200:
|
39 |
+
return {
|
40 |
+
"title": "",
|
41 |
+
"abstract": "",
|
42 |
+
"success": False,
|
43 |
+
"message": "Error fetching paper from arXiv API",
|
44 |
+
}
|
45 |
+
|
46 |
+
root = ET.fromstring(resp.text)
|
47 |
+
ns = {"arxiv": "http://www.w3.org/2005/Atom"}
|
48 |
+
entry = root.find(".//arxiv:entry", ns)
|
49 |
+
if entry is None:
|
50 |
+
return {"title": "", "abstract": "", "success": False, "message": "Paper not found"}
|
51 |
+
|
52 |
+
title = entry.find("arxiv:title", ns).text.strip()
|
53 |
+
abstract = entry.find("arxiv:summary", ns).text.strip()
|
54 |
+
|
55 |
+
return {
|
56 |
+
"title": title,
|
57 |
+
"abstract": abstract,
|
58 |
+
"success": True,
|
59 |
+
"message": "Paper fetched successfully!",
|
60 |
+
}
|
61 |
+
except Exception as e:
|
62 |
+
return {
|
63 |
+
"title": "",
|
64 |
+
"abstract": "",
|
65 |
+
"success": False,
|
66 |
+
"message": f"Error fetching paper: {e}",
|
67 |
+
}
|
68 |
+
|
69 |
+
##################################################
|
70 |
+
# Prediction function
|
71 |
+
##################################################
|
72 |
+
@spaces.GPU(duration=60, enable_queue=True)
|
73 |
+
def predict(title, abstract):
|
74 |
+
"""
|
75 |
+
Predict a normalized academic impact score (0–1) from title & abstract.
|
76 |
+
"""
|
77 |
+
global model, tokenizer
|
78 |
+
if model is None:
|
79 |
+
# 1) Load config
|
80 |
+
config = AutoConfig.from_pretrained(model_path)
|
81 |
+
|
82 |
+
# 2) Remove quantization_config if it exists (avoid NoneType error in PEFT)
|
83 |
+
if hasattr(config, "quantization_config"):
|
84 |
+
del config.quantization_config
|
85 |
+
|
86 |
+
# 3) Optionally set number of labels
|
87 |
+
config.num_labels = 1
|
88 |
+
|
89 |
+
# 4) Load the model
|
90 |
+
model_loaded = AutoModelForSequenceClassification.from_pretrained(
|
91 |
+
model_path,
|
92 |
+
config=config,
|
93 |
+
torch_dtype=torch.float32, # float32 for stable cublasLt
|
94 |
+
device_map=None,
|
95 |
+
low_cpu_mem_usage=False
|
96 |
+
)
|
97 |
+
model_loaded.to(device)
|
98 |
+
model_loaded.eval()
|
99 |
+
|
100 |
+
# 5) Load tokenizer
|
101 |
+
tokenizer_loaded = AutoTokenizer.from_pretrained(model_path)
|
102 |
+
|
103 |
+
# Assign to globals
|
104 |
+
model, tokenizer = model_loaded, tokenizer_loaded
|
105 |
+
|
106 |
+
text = (
|
107 |
+
f"Given a certain paper,\n"
|
108 |
+
f"Title: {title.strip()}\n"
|
109 |
+
f"Abstract: {abstract.strip()}\n"
|
110 |
+
f"Predict its normalized academic impact (0~1):"
|
111 |
+
)
|
112 |
+
|
113 |
+
try:
|
114 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
|
115 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
116 |
+
with torch.no_grad():
|
117 |
+
outputs = model(**inputs)
|
118 |
+
logits = outputs.logits
|
119 |
+
prob = torch.sigmoid(logits).item()
|
120 |
+
score = min(1.0, prob + 0.05)
|
121 |
+
return round(score, 4)
|
122 |
+
except Exception as e:
|
123 |
+
print("Prediction error:", e)
|
124 |
+
return 0.0
|
125 |
+
|
126 |
+
##################################################
|
127 |
+
# Grading
|
128 |
+
##################################################
|
129 |
+
def get_grade_and_emoji(score):
|
130 |
+
"""Map a 0–1 score to an A/B/C style grade with an emoji indicator."""
|
131 |
+
if score >= 0.900:
|
132 |
+
return "AAA 🌟"
|
133 |
+
if score >= 0.800:
|
134 |
+
return "AA ⭐"
|
135 |
+
if score >= 0.650:
|
136 |
+
return "A ✨"
|
137 |
+
if score >= 0.600:
|
138 |
+
return "BBB 🔵"
|
139 |
+
if score >= 0.550:
|
140 |
+
return "BB 📘"
|
141 |
+
if score >= 0.500:
|
142 |
+
return "B 📖"
|
143 |
+
if score >= 0.400:
|
144 |
+
return "CCC 📝"
|
145 |
+
if score >= 0.300:
|
146 |
+
return "CC ✏️"
|
147 |
+
return "C 📑"
|
148 |
+
|
149 |
+
##################################################
|
150 |
+
# Validation
|
151 |
+
##################################################
|
152 |
+
def validate_input(title, abstract):
|
153 |
+
"""
|
154 |
+
Ensure the title has at least 3 words, the abstract at least 50,
|
155 |
+
and check for ASCII-only characters.
|
156 |
+
"""
|
157 |
+
non_ascii = re.compile(r"[^\x00-\x7F]")
|
158 |
+
if len(title.split()) < 3:
|
159 |
+
return False, "Title must be at least 3 words."
|
160 |
+
if len(abstract.split()) < 50:
|
161 |
+
return False, "Abstract must be at least 50 words."
|
162 |
+
if non_ascii.search(title):
|
163 |
+
return False, "Title contains non-ASCII characters."
|
164 |
+
if non_ascii.search(abstract):
|
165 |
+
return False, "Abstract contains non-ASCII characters."
|
166 |
+
return True, "Inputs look good."
|
167 |
+
|
168 |
+
def update_button_status(title, abstract):
|
169 |
+
"""Enable or disable the predict button based on validation."""
|
170 |
+
valid, msg = validate_input(title, abstract)
|
171 |
+
if not valid:
|
172 |
+
return gr.update(value="Error: " + msg), gr.update(interactive=False)
|
173 |
+
return gr.update(value=msg), gr.update(interactive=True)
|
174 |
+
|
175 |
+
##################################################
|
176 |
+
# Process arXiv input
|
177 |
+
##################################################
|
178 |
+
def process_arxiv_input(arxiv_input):
|
179 |
+
"""
|
180 |
+
Called when user clicks 'Fetch Paper Details' to fill in title/abstract from arXiv.
|
181 |
+
"""
|
182 |
+
if not arxiv_input.strip():
|
183 |
+
return "", "", "Please enter an arXiv URL or ID"
|
184 |
+
res = fetch_arxiv_paper(arxiv_input)
|
185 |
+
if res["success"]:
|
186 |
+
return res["title"], res["abstract"], res["message"]
|
187 |
+
return "", "", res["message"]
|
188 |
+
|
189 |
+
##################################################
|
190 |
+
# Custom CSS
|
191 |
+
##################################################
|
192 |
+
css = """
|
193 |
+
.gradio-container { font-family: Arial, sans-serif; }
|
194 |
+
.main-title {
|
195 |
+
text-align: center; color: #2563eb; font-size: 2.5rem!important;
|
196 |
+
margin-bottom:1rem!important;
|
197 |
+
background: linear-gradient(45deg,#2563eb,#1d4ed8);
|
198 |
+
-webkit-background-clip: text; -webkit-text-fill-color: transparent;
|
199 |
+
}
|
200 |
+
.input-section {
|
201 |
+
background:#fff; padding:1.5rem; border-radius:0.5rem;
|
202 |
+
box-shadow:0 4px 6px rgba(0,0,0,0.1);
|
203 |
+
}
|
204 |
+
.result-section {
|
205 |
+
background:#f7f9fc; padding:1.5rem; border-radius:0.5rem;
|
206 |
+
margin-top:2rem;
|
207 |
+
}
|
208 |
+
.grade-display {
|
209 |
+
font-size:2.5rem; text-align:center; margin-top:1rem;
|
210 |
+
}
|
211 |
+
.arxiv-input {
|
212 |
+
margin-bottom:1.5rem; padding:1rem; background:#f3f4f6;
|
213 |
+
border-radius:0.5rem;
|
214 |
+
}
|
215 |
+
.arxiv-link {
|
216 |
+
color:#2563eb; text-decoration: underline;
|
217 |
+
}
|
218 |
+
"""
|
219 |
+
|
220 |
+
##################################################
|
221 |
+
# Example Papers
|
222 |
+
##################################################
|
223 |
+
example_papers = [
|
224 |
+
{
|
225 |
+
"title": "Attention Is All You Need",
|
226 |
+
"abstract": (
|
227 |
+
"The dominant sequence transduction models are based on complex recurrent or "
|
228 |
+
"convolutional neural networks that include an encoder and a decoder. The best performing "
|
229 |
+
"models also connect the encoder and decoder through an attention mechanism. We propose a "
|
230 |
+
"new simple network architecture, the Transformer, based solely on attention mechanisms, "
|
231 |
+
"dispensing with recurrence and convolutions entirely. Experiments on two machine "
|
232 |
+
"translation tasks show these models to be superior in quality while being more "
|
233 |
+
"parallelizable and requiring significantly less time to train."
|
234 |
+
),
|
235 |
+
"score": 0.982,
|
236 |
+
"note": "Revolutionary paper that introduced the Transformer architecture."
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"title": "Language Models are Few-Shot Learners",
|
240 |
+
"abstract": (
|
241 |
+
"Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by "
|
242 |
+
"pre-training on a large corpus of text followed by fine-tuning on a specific task. While "
|
243 |
+
"typically task-agnostic in architecture, this method still requires task-specific "
|
244 |
+
"fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans "
|
245 |
+
"can generally perform a new language task from only a few examples or from simple "
|
246 |
+
"instructions—something which current NLP systems still largely struggle to do. Here we "
|
247 |
+
"show that scaling up language models greatly improves task-agnostic, few-shot "
|
248 |
+
"performance, sometimes even reaching competitiveness with prior state-of-the-art "
|
249 |
+
"fine-tuning approaches."
|
250 |
+
),
|
251 |
+
"score": 0.956,
|
252 |
+
"note": "Groundbreaking GPT-3 paper on few-shot learning."
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"title": "An Empirical Study of Neural Network Training Protocols",
|
256 |
+
"abstract": (
|
257 |
+
"This paper presents a comparative analysis of different training protocols for neural "
|
258 |
+
"networks across various architectures. We examine the effects of learning rate schedules, "
|
259 |
+
"batch size selection, and optimization algorithms on model convergence and final "
|
260 |
+
"performance. Our experiments span multiple datasets and model sizes, providing practical "
|
261 |
+
"insights for deep learning practitioners."
|
262 |
+
),
|
263 |
+
"score": 0.623,
|
264 |
+
"note": "Solid empirical comparison of training protocols."
|
265 |
+
}
|
266 |
+
]
|
267 |
+
|
268 |
+
##################################################
|
269 |
+
# Build the Gradio Interface
|
270 |
+
##################################################
|
271 |
+
with gr.Blocks(theme=gr.themes.Default(), css=css) as iface:
|
272 |
+
gr.Markdown("<div class='main-title'>Papers Impact: AI-Powered Research Impact Predictor</div>")
|
273 |
+
gr.Markdown("**Predict the potential research impact (0–1) from title & abstract.**")
|
274 |
+
|
275 |
+
with gr.Row():
|
276 |
+
with gr.Column(elem_classes="input-section"):
|
277 |
+
gr.Markdown("### Import from arXiv")
|
278 |
+
with gr.Group(elem_classes="arxiv-input"):
|
279 |
+
arxiv_input = gr.Textbox(
|
280 |
+
lines=1,
|
281 |
+
placeholder="e.g. 2504.11651",
|
282 |
+
label="arXiv URL or ID",
|
283 |
+
value="2504.11651"
|
284 |
+
)
|
285 |
+
gr.Markdown(
|
286 |
+
"""
|
287 |
+
<p>
|
288 |
+
Enter an arXiv ID or URL. For example:
|
289 |
+
<code>2504.11651</code> or <code>https://arxiv.org/pdf/2504.11651</code>
|
290 |
+
</p>
|
291 |
+
"""
|
292 |
+
)
|
293 |
+
fetch_btn = gr.Button("🔍 Fetch Paper Details", variant="secondary")
|
294 |
+
|
295 |
+
gr.Markdown("### Or Enter Manually")
|
296 |
+
title_input = gr.Textbox(
|
297 |
+
lines=2,
|
298 |
+
placeholder="Paper title (≥3 words)...",
|
299 |
+
label="Paper Title"
|
300 |
+
)
|
301 |
+
abs_input = gr.Textbox(
|
302 |
+
lines=5,
|
303 |
+
placeholder="Paper abstract (≥50 words)...",
|
304 |
+
label="Paper Abstract"
|
305 |
+
)
|
306 |
+
status_box = gr.Textbox(label="Validation Status", interactive=False)
|
307 |
+
predict_btn = gr.Button("🎯 Predict Impact", interactive=False, variant="primary")
|
308 |
+
|
309 |
+
with gr.Column(elem_classes="result-section"):
|
310 |
+
score_box = gr.Number(label="Impact Score")
|
311 |
+
grade_box = gr.Textbox(label="Grade", elem_classes="grade-display")
|
312 |
+
|
313 |
+
############## METHODOLOGY EXPLANATION ##############
|
314 |
+
gr.Markdown(
|
315 |
+
"""
|
316 |
+
### Scientific Methodology
|
317 |
+
- **Training Data**: Model trained on an extensive dataset of published papers in CS.CV, CS.CL, CS.AI
|
318 |
+
- **Optimization**: NDCG optimization with Sigmoid activation and MSE loss
|
319 |
+
- **Validation**: Cross-validated against historical citation data
|
320 |
+
- **Architecture**: Advanced transformer-based (LLaMA derivative) textual encoder
|
321 |
+
- **Metrics**: Quantitative analysis of citation patterns and research influence
|
322 |
+
"""
|
323 |
+
)
|
324 |
+
|
325 |
+
############## RATING SCALE ##############
|
326 |
+
gr.Markdown(
|
327 |
+
"""
|
328 |
+
### Rating Scale
|
329 |
+
| Grade | Score Range | Description | Emoji |
|
330 |
+
|-------|-------------|---------------------|-------|
|
331 |
+
| AAA | 0.900–1.000 | **Exceptional** | 🌟 |
|
332 |
+
| AA | 0.800–0.899 | **Very High** | ⭐ |
|
333 |
+
| A | 0.650–0.799 | **High** | ✨ |
|
334 |
+
| BBB | 0.600–0.649 | **Above Average** | 🔵 |
|
335 |
+
| BB | 0.550–0.599 | **Moderate** | 📘 |
|
336 |
+
| B | 0.500–0.549 | **Average** | 📖 |
|
337 |
+
| CCC | 0.400–0.499 | **Below Average** | 📝 |
|
338 |
+
| CC | 0.300–0.399 | **Low** | ✏️ |
|
339 |
+
| C | <0.300 | **Limited** | 📑 |
|
340 |
+
"""
|
341 |
+
)
|
342 |
+
|
343 |
+
############## EXAMPLE PAPERS ##############
|
344 |
+
gr.Markdown("### Example Papers")
|
345 |
+
for paper in example_papers:
|
346 |
+
gr.Markdown(
|
347 |
+
f"**{paper['title']}** \n"
|
348 |
+
f"Score: {paper['score']} | Grade: {get_grade_and_emoji(paper['score'])} \n"
|
349 |
+
f"{paper['abstract']} \n"
|
350 |
+
f"*{paper['note']}*\n---"
|
351 |
+
)
|
352 |
+
|
353 |
+
##################################################
|
354 |
+
# Events
|
355 |
+
##################################################
|
356 |
+
# Validation triggers
|
357 |
+
title_input.change(update_button_status, [title_input, abs_input], [status_box, predict_btn])
|
358 |
+
abs_input.change(update_button_status, [title_input, abs_input], [status_box, predict_btn])
|
359 |
+
|
360 |
+
# arXiv fetch
|
361 |
+
fetch_btn.click(process_arxiv_input, [arxiv_input], [title_input, abs_input, status_box])
|
362 |
+
|
363 |
+
# Predict handler
|
364 |
+
def run_predict(t, a):
|
365 |
+
s = predict(t, a)
|
366 |
+
return s, get_grade_and_emoji(s)
|
367 |
+
|
368 |
+
predict_btn.click(run_predict, [title_input, abs_input], [score_box, grade_box])
|
369 |
+
|
370 |
+
##################################################
|
371 |
+
# Launch
|
372 |
+
##################################################
|
373 |
+
if __name__ == "__main__":
|
374 |
+
iface.launch()
|