PapersImpact / app.py
openfree's picture
Update app.py
1b268e3 verified
import gradio as gr
import spaces
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import torch.nn as nn
import re
import requests
from urllib.parse import urlparse
import xml.etree.ElementTree as ET
##################################################
# Global setup
##################################################
model_path = "ssocean/NAIP"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = None
tokenizer = None
##################################################
# Fetch paper info from arXiv
##################################################
def fetch_arxiv_paper(arxiv_input):
"""
Fetch paper title & abstract from an arXiv URL or ID.
"""
try:
if "arxiv.org" in arxiv_input:
parsed = urlparse(arxiv_input)
path = parsed.path
arxiv_id = path.split("/")[-1].replace(".pdf", "")
else:
arxiv_id = arxiv_input.strip()
api_url = f"http://export.arxiv.org/api/query?id_list={arxiv_id}"
resp = requests.get(api_url)
if resp.status_code != 200:
return {
"title": "",
"abstract": "",
"success": False,
"message": "Error fetching paper from arXiv API",
}
root = ET.fromstring(resp.text)
ns = {"arxiv": "http://www.w3.org/2005/Atom"}
entry = root.find(".//arxiv:entry", ns)
if entry is None:
return {"title": "", "abstract": "", "success": False, "message": "Paper not found"}
title = entry.find("arxiv:title", ns).text.strip()
abstract = entry.find("arxiv:summary", ns).text.strip()
return {
"title": title,
"abstract": abstract,
"success": True,
"message": "Paper fetched successfully!",
}
except Exception as e:
return {
"title": "",
"abstract": "",
"success": False,
"message": f"Error fetching paper: {e}",
}
##################################################
# Prediction function
##################################################
@spaces.GPU(duration=60, enable_queue=True)
def predict(title, abstract):
"""
Predict a normalized academic impact score (0–1) from title & abstract.
"""
global model, tokenizer
if model is None:
# 1) Load config
config = AutoConfig.from_pretrained(model_path)
# 2) Remove quantization_config if it exists (avoid NoneType error in PEFT)
if hasattr(config, "quantization_config"):
del config.quantization_config
# 3) Optionally set number of labels
config.num_labels = 1
# 4) Load the model
model_loaded = AutoModelForSequenceClassification.from_pretrained(
model_path,
config=config,
torch_dtype=torch.float32, # float32 for stable cublasLt
device_map=None,
low_cpu_mem_usage=False
)
model_loaded.to(device)
model_loaded.eval()
# 5) Load tokenizer
tokenizer_loaded = AutoTokenizer.from_pretrained(model_path)
# Assign to globals
model, tokenizer = model_loaded, tokenizer_loaded
text = (
f"Given a certain paper,\n"
f"Title: {title.strip()}\n"
f"Abstract: {abstract.strip()}\n"
f"Predict its normalized academic impact (0~1):"
)
try:
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
prob = torch.sigmoid(logits).item()
score = min(1.0, prob + 0.05)
return round(score, 4)
except Exception as e:
print("Prediction error:", e)
return 0.0
##################################################
# Grading
##################################################
def get_grade_and_emoji(score):
"""Map a 0–1 score to an A/B/C style grade with an emoji indicator."""
if score >= 0.900:
return "AAA 🌟"
if score >= 0.800:
return "AA ⭐"
if score >= 0.650:
return "A ✨"
if score >= 0.600:
return "BBB πŸ”΅"
if score >= 0.550:
return "BB πŸ“˜"
if score >= 0.500:
return "B πŸ“–"
if score >= 0.400:
return "CCC πŸ“"
if score >= 0.300:
return "CC ✏️"
return "C πŸ“‘"
##################################################
# Validation
##################################################
def validate_input(title, abstract):
"""
Ensure the title has at least 3 words, the abstract at least 50,
and check for ASCII-only characters.
"""
non_ascii = re.compile(r"[^\x00-\x7F]")
if len(title.split()) < 3:
return False, "Title must be at least 3 words."
if len(abstract.split()) < 50:
return False, "Abstract must be at least 50 words."
if non_ascii.search(title):
return False, "Title contains non-ASCII characters."
if non_ascii.search(abstract):
return False, "Abstract contains non-ASCII characters."
return True, "Inputs look good."
def update_button_status(title, abstract):
"""Enable or disable the predict button based on validation."""
valid, msg = validate_input(title, abstract)
if not valid:
return gr.update(value="Error: " + msg), gr.update(interactive=False)
return gr.update(value=msg), gr.update(interactive=True)
##################################################
# Process arXiv input
##################################################
def process_arxiv_input(arxiv_input):
"""
Called when user clicks 'Fetch Paper Details' to fill in title/abstract from arXiv.
"""
if not arxiv_input.strip():
return "", "", "Please enter an arXiv URL or ID"
res = fetch_arxiv_paper(arxiv_input)
if res["success"]:
return res["title"], res["abstract"], res["message"]
return "", "", res["message"]
##################################################
# Custom CSS
##################################################
css = """
.gradio-container { font-family: Arial, sans-serif; }
.main-title {
text-align: center; color: #2563eb; font-size: 2.5rem!important;
margin-bottom:1rem!important;
background: linear-gradient(45deg,#2563eb,#1d4ed8);
-webkit-background-clip: text; -webkit-text-fill-color: transparent;
}
.input-section {
background:#fff; padding:1.5rem; border-radius:0.5rem;
box-shadow:0 4px 6px rgba(0,0,0,0.1);
}
.result-section {
background:#f7f9fc; padding:1.5rem; border-radius:0.5rem;
margin-top:2rem;
}
.grade-display {
font-size:2.5rem; text-align:center; margin-top:1rem;
}
.arxiv-input {
margin-bottom:1.5rem; padding:1rem; background:#f3f4f6;
border-radius:0.5rem;
}
.arxiv-link {
color:#2563eb; text-decoration: underline;
}
"""
##################################################
# Header HTML (social links)
##################################################
header_html = """
<div align="center" style="line-height: 1;">
<a href="https://discord.gg/openfreeai" style="margin: 2px;">
<img alt="OpenFree AI Discord Server" src="https://img.shields.io/badge/Discord-000000?style=for-the-badge&logo=discord&logoColor=000&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://x.com/openfree_ai" style="margin: 2px;">
<img alt="X.ai" src="https://img.shields.io/badge/openfree_ai-000000?style=for-the-badge&logo=X&logoColor=000&color=000&labelColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/collections/VIDraft/best-open-ai-services-68057e6e312880ea92abaf4c" style="margin: 2px;">
<img alt="Collections" src="https://img.shields.io/badge/Collections-f000000?style=for-the-badge&logo=huggingface&logoColor=000&labelColor" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/VIDraft" style="margin: 2px;">
<img alt="HF Page" src="https://img.shields.io/badge/VIDraft-fcd022?style=for-the-badge&logo=huggingface&logoColor=000&labelColor" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="font-weight: bold; margin-top: 10px; margin-bottom: 15px;">
<b>Papers Leaderboard: <a href="https://huggingface.co/spaces/Heartsync/Papers-Leaderboard">https://huggingface.co/spaces/Heartsync/Papers-Leaderboard</a></b>
</div>
"""
##################################################
# Example Papers
##################################################
example_papers = [
{
"title": "Attention Is All You Need",
"abstract": (
"The dominant sequence transduction models are based on complex recurrent or "
"convolutional neural networks that include an encoder and a decoder. The best performing "
"models also connect the encoder and decoder through an attention mechanism. We propose a "
"new simple network architecture, the Transformer, based solely on attention mechanisms, "
"dispensing with recurrence and convolutions entirely. Experiments on two machine "
"translation tasks show these models to be superior in quality while being more "
"parallelizable and requiring significantly less time to train."
),
"score": 0.982,
"note": "Revolutionary paper that introduced the Transformer architecture."
},
{
"title": "Language Models are Few-Shot Learners",
"abstract": (
"Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by "
"pre-training on a large corpus of text followed by fine-tuning on a specific task. While "
"typically task-agnostic in architecture, this method still requires task-specific "
"fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans "
"can generally perform a new language task from only a few examples or from simple "
"instructionsβ€”something which current NLP systems still largely struggle to do. Here we "
"show that scaling up language models greatly improves task-agnostic, few-shot "
"performance, sometimes even reaching competitiveness with prior state-of-the-art "
"fine-tuning approaches."
),
"score": 0.956,
"note": "Groundbreaking GPT-3 paper on few-shot learning."
},
{
"title": "An Empirical Study of Neural Network Training Protocols",
"abstract": (
"This paper presents a comparative analysis of different training protocols for neural "
"networks across various architectures. We examine the effects of learning rate schedules, "
"batch size selection, and optimization algorithms on model convergence and final "
"performance. Our experiments span multiple datasets and model sizes, providing practical "
"insights for deep learning practitioners."
),
"score": 0.623,
"note": "Solid empirical comparison of training protocols."
}
]
##################################################
# Build the Gradio Interface
##################################################
with gr.Blocks(theme=gr.themes.Default(), css=css) as iface:
# Add the social media links and leaderboard link at the top
gr.HTML(header_html)
gr.Markdown("<div class='main-title'>Papers Impact: AI-Powered Research Impact Predictor</div>")
gr.Markdown("**Predict the potential research impact (0–1) from title & abstract.**")
with gr.Row():
with gr.Column(elem_classes="input-section"):
gr.Markdown("### Import from arXiv")
with gr.Group(elem_classes="arxiv-input"):
arxiv_input = gr.Textbox(
lines=1,
placeholder="e.g. 2504.11651",
label="arXiv URL or ID",
value="2504.11651"
)
gr.Markdown(
"""
<p>
Enter an arXiv ID or URL. For example:
<code>2504.11651</code> or <code>https://arxiv.org/pdf/2504.11651</code>
</p>
"""
)
fetch_btn = gr.Button("πŸ” Fetch Paper Details", variant="secondary")
gr.Markdown("### Or Enter Manually")
title_input = gr.Textbox(
lines=2,
placeholder="Paper title (β‰₯3 words)...",
label="Paper Title"
)
abs_input = gr.Textbox(
lines=5,
placeholder="Paper abstract (β‰₯50 words)...",
label="Paper Abstract"
)
status_box = gr.Textbox(label="Validation Status", interactive=False)
predict_btn = gr.Button("🎯 Predict Impact", interactive=False, variant="primary")
with gr.Column(elem_classes="result-section"):
score_box = gr.Number(label="Impact Score")
grade_box = gr.Textbox(label="Grade", elem_classes="grade-display")
############## METHODOLOGY EXPLANATION ##############
gr.Markdown(
"""
### Scientific Methodology
- **Training Data**: Model trained on an extensive dataset of published papers in CS.CV, CS.CL, CS.AI
- **Optimization**: NDCG optimization with Sigmoid activation and MSE loss
- **Validation**: Cross-validated against historical citation data
- **Architecture**: Advanced transformer-based (LLaMA derivative) textual encoder
- **Metrics**: Quantitative analysis of citation patterns and research influence
"""
)
############## RATING SCALE ##############
gr.Markdown(
"""
### Rating Scale
| Grade | Score Range | Description | Emoji |
|-------|-------------|---------------------|-------|
| AAA | 0.900–1.000 | **Exceptional** | 🌟 |
| AA | 0.800–0.899 | **Very High** | ⭐ |
| A | 0.650–0.799 | **High** | ✨ |
| BBB | 0.600–0.649 | **Above Average** | πŸ”΅ |
| BB | 0.550–0.599 | **Moderate** | πŸ“˜ |
| B | 0.500–0.549 | **Average** | πŸ“– |
| CCC | 0.400–0.499 | **Below Average** | πŸ“ |
| CC | 0.300–0.399 | **Low** | ✏️ |
| C | <0.300 | **Limited** | πŸ“‘ |
"""
)
############## EXAMPLE PAPERS ##############
gr.Markdown("### Example Papers")
for paper in example_papers:
gr.Markdown(
f"**{paper['title']}** \n"
f"Score: {paper['score']} | Grade: {get_grade_and_emoji(paper['score'])} \n"
f"{paper['abstract']} \n"
f"*{paper['note']}*\n---"
)
##################################################
# Events
##################################################
# Validation triggers
title_input.change(update_button_status, [title_input, abs_input], [status_box, predict_btn])
abs_input.change(update_button_status, [title_input, abs_input], [status_box, predict_btn])
# arXiv fetch
fetch_btn.click(process_arxiv_input, [arxiv_input], [title_input, abs_input, status_box])
# Predict handler
def run_predict(t, a):
s = predict(t, a)
return s, get_grade_and_emoji(s)
predict_btn.click(run_predict, [title_input, abs_input], [score_box, grade_box])
##################################################
# Launch
##################################################
if __name__ == "__main__":
iface.launch()