PapersImpact / app.py
openfree's picture
Update app.py
3334620 verified
raw
history blame
12.6 kB
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import re
import requests
from urllib.parse import urlparse
import xml.etree.ElementTree as ET
# λͺ¨λΈ κ²½λ‘œμ™€ λ””λ°”μ΄μŠ€ μ„€μ •
model_path = r'ssocean/NAIP'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# μ „μ—­ λ³€μˆ˜λ‘œ λͺ¨λΈΒ·ν† ν¬λ‚˜μ΄μ € μ„ μ–Έ
model = None
tokenizer = None
def fetch_arxiv_paper(arxiv_input):
"""arXiv URL λ˜λŠ” IDλ‘œλΆ€ν„° 제λͺ©κ³Ό μš”μ•½(fetch)"""
try:
if 'arxiv.org' in arxiv_input:
parsed = urlparse(arxiv_input)
arxiv_id = parsed.path.split('/')[-1].replace('.pdf', '')
else:
arxiv_id = arxiv_input.strip()
api_url = f'http://export.arxiv.org/api/query?id_list={arxiv_id}'
resp = requests.get(api_url)
if resp.status_code != 200:
return {"title":"", "abstract":"", "success":False, "message":"arXiv API μ—λŸ¬"}
root = ET.fromstring(resp.text)
ns = {'atom': 'http://www.w3.org/2005/Atom'}
entry = root.find('.//atom:entry', ns)
if entry is None:
return {"title":"", "abstract":"", "success":False, "message":"논문을 찾을 수 μ—†μŠ΅λ‹ˆλ‹€"}
title = entry.find('atom:title', ns).text.strip()
abstract = entry.find('atom:summary', ns).text.strip()
return {"title": title, "abstract": abstract, "success": True, "message": "μ„±κ³΅μ μœΌλ‘œ κ°€μ Έμ™”μŠ΅λ‹ˆλ‹€!"}
except Exception as e:
return {"title":"", "abstract":"", "success":False, "message":f"였λ₯˜: {e}"}
@spaces.GPU(duration=60, enable_queue=True)
def predict(title, abstract):
"""λ…Όλ¬Έ 제λͺ©κ³Ό μš”μ•½μ„ λ°›μ•„ 0~1 μ‚¬μ΄μ˜ impact score 예츑"""
global model, tokenizer
# 졜초 호좜 μ‹œ λͺ¨λΈΒ·ν† ν¬λ‚˜μ΄μ € λ‘œλ“œ
if model is None:
model = AutoModelForSequenceClassification.from_pretrained(
model_path,
num_labels=1,
quantization_config=None, # bitsandbytes μ–‘μžν™” μ™„μ „ λΉ„ν™œμ„±ν™”
torch_dtype=torch.float32, # μ „λΆ€ float32
device_map=None, # accelerate dispatch λΉ„ν™œμ„±
low_cpu_mem_usage=False
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.to(device)
model.eval()
# μž…λ ₯ ν…μŠ€νŠΈ ꡬ성
text = (
f"Given a certain paper,\n"
f"Title: {title.strip()}\n"
f"Abstract: {abstract.strip()}\n"
f"Predict its normalized academic impact (0~1):"
)
try:
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
prob = torch.sigmoid(outputs.logits).item()
score = min(1.0, prob + 0.05) # +0.05 보정, μ΅œλŒ€ 1.0
return round(score, 4)
except Exception as e:
print("Prediction error:", e)
return 0.0
def get_grade_and_emoji(score):
if score >= 0.900: return "AAA 🌟"
if score >= 0.800: return "AA ⭐"
if score >= 0.650: return "A ✨"
if score >= 0.600: return "BBB πŸ”΅"
if score >= 0.550: return "BB πŸ“˜"
if score >= 0.500: return "B πŸ“–"
if score >= 0.400: return "CCC πŸ“"
if score >= 0.300: return "CC ✏️"
return "C πŸ“‘"
def validate_input(title, abstract):
"""제λͺ©Β·μš”μ•½ κΈ€μž 수 및 λΉ„μ˜μ–΄ 문자 검사"""
non_latin = re.compile(r'[^\u0000-\u007F]')
if len(title.split()) < 3:
return False, "제λͺ©μ€ μ΅œμ†Œ 3단어 이상이어야 ν•©λ‹ˆλ‹€."
if len(abstract.split()) < 50:
return False, "μš”μ•½μ€ μ΅œμ†Œ 50단어 이상이어야 ν•©λ‹ˆλ‹€."
if non_latin.search(title):
return False, "제λͺ©μ— μ˜μ–΄ μ™Έ λ¬Έμžκ°€ ν¬ν•¨λ˜μ—ˆμŠ΅λ‹ˆλ‹€."
if non_latin.search(abstract):
return False, "μš”μ•½μ— μ˜μ–΄ μ™Έ λ¬Έμžκ°€ ν¬ν•¨λ˜μ—ˆμŠ΅λ‹ˆλ‹€."
return True, "μž…λ ₯ μœ νš¨ν•©λ‹ˆλ‹€."
def update_button_status(title, abstract):
valid, msg = validate_input(title, abstract)
if not valid:
return gr.update(value="Error: " + msg), gr.update(interactive=False)
return gr.update(value=msg), gr.update(interactive=True)
def process_arxiv_input(arxiv_input):
if not arxiv_input.strip():
return "", "", "URL λ˜λŠ” IDλ₯Ό μž…λ ₯ν•˜μ„Έμš”"
res = fetch_arxiv_paper(arxiv_input)
if res["success"]:
return res["title"], res["abstract"], res["message"]
return "", "", res["message"]
# CSS μ •μ˜
css = """
.gradio-container {
font-family: 'Arial', sans-serif;
}
.main-title {
text-align: center;
color: #2563eb;
font-size: 2.5rem !important;
margin-bottom: 1rem !important;
background: linear-gradient(45deg, #2563eb, #1d4ed8);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.sub-title {
text-align: center;
color: #4b5563;
font-size: 1.5rem !important;
margin-bottom: 2rem !important;
}
.input-section {
background: white;
padding: 2rem;
border-radius: 1rem;
box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1);
}
.result-section {
background: #f8fafc;
padding: 2rem;
border-radius: 1rem;
margin-top: 2rem;
}
.methodology-section {
background: #ecfdf5;
padding: 2rem;
border-radius: 1rem;
margin-top: 2rem;
}
.example-section {
background: #fff7ed;
padding: 2rem;
border-radius: 1rem;
margin-top: 2rem;
}
.grade-display {
font-size: 3rem;
text-align: center;
margin: 1rem 0;
}
.arxiv-input {
margin-bottom: 1.5rem;
padding: 1rem;
background: #f3f4f6;
border-radius: 0.5rem;
}
.arxiv-link {
color: #2563eb;
text-decoration: underline;
font-size: 0.9em;
margin-top: 0.5em;
}
.arxiv-note {
color: #666;
font-size: 0.9em;
margin-top: 0.5em;
margin-bottom: 0.5em;
}
"""
# Gradio UI ꡬ성
with gr.Blocks(theme=gr.themes.Default(), css=css) as iface:
gr.Markdown(
"""
# Papers Impact: AI-Powered Research Impact Predictor
## https://discord.gg/openfreeai
"""
)
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space&countColor=%23263759" />
</a>""")
with gr.Row():
with gr.Column(elem_classes="input-section"):
gr.Markdown("### πŸ“‘ arXivμ—μ„œ 뢈러였기")
arxiv_input = gr.Textbox(
lines=1,
placeholder="μ˜ˆμ‹œ: 2504.11651",
label="arXiv URL/ID",
value="2504.11651"
)
fetch_btn = gr.Button("πŸ” 뢈러였기", variant="secondary")
gr.Markdown("### πŸ“ 직접 μž…λ ₯")
title_input = gr.Textbox(
lines=2,
placeholder="λ…Όλ¬Έ 제λͺ© (μ΅œμ†Œ 3단어)",
label="제λͺ©"
)
abstract_input = gr.Textbox(
lines=5,
placeholder="λ…Όλ¬Έ μš”μ•½ (μ΅œμ†Œ 50단어)",
label="μš”μ•½"
)
status = gr.Textbox(label="βœ”οΈ μž…λ ₯ μƒνƒœ", interactive=False)
submit_btn = gr.Button("🎯 μ˜ˆμΈ‘ν•˜κΈ°", interactive=False, variant="primary")
with gr.Column(elem_classes="result-section"):
score_out = gr.Number(label="🎯 Impact Score")
grade_out = gr.Textbox(label="πŸ† Grade", elem_classes="grade-display")
with gr.Row(elem_classes="methodology-section"):
gr.Markdown(
"""
### πŸ”¬ Scientific Methodology
- **Training Data**: Model trained on extensive dataset of published papers from CS.CV, CS.CL(NLP), and CS.AI fields
- **Optimization**: NDCG optimization with Sigmoid activation and MSE loss function
- **Validation**: Cross-validated against historical paper impact data
- **Architecture**: Advanced transformer-based deep textual analysis
- **Metrics**: Quantitative analysis of citation patterns and research influence
"""
)
with gr.Row():
gr.Markdown(
"""
### πŸ“Š Rating Scale
| Grade | Score Range | Description | Indicator |
|-------|-------------|-------------|-----------|
| AAA | 0.900-1.000 | Exceptional Impact | 🌟 |
| AA | 0.800-0.899 | Very High Impact | ⭐ |
| A | 0.650-0.799 | High Impact | ✨ |
| BBB | 0.600-0.649 | Above Average | πŸ”΅ |
| BB | 0.550-0.599 | Moderate Impact | πŸ“˜ |
| B | 0.500-0.549 | Average Impact | πŸ“– |
| CCC | 0.400-0.499 | Below Average | πŸ“ |
| CC | 0.300-0.399 | Low Impact | ✏️ |
| C | <0.299 | Limited Impact | πŸ“‘ |
"""
)
with gr.Row(elem_classes="example-section"):
gr.Markdown("### πŸ“‹ Example Papers")
example_papers = [
{
"title": "Attention Is All You Need",
"abstract": "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train.",
"score": 0.982,
"note": "πŸ’« Revolutionary paper that introduced the Transformer architecture, fundamentally changing NLP and deep learning."
},
{
"title": "Language Models are Few-Shot Learners",
"abstract": "Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches.",
"score": 0.956,
"note": "πŸš€ Groundbreaking GPT-3 paper that demonstrated the power of large language models."
},
{
"title": "An Empirical Study of Neural Network Training Protocols",
"abstract": "This paper presents a comparative analysis of different training protocols for neural networks across various architectures. We examine the effects of learning rate schedules, batch size selection, and optimization algorithms on model convergence and final performance. Our experiments span multiple datasets and model sizes, providing practical insights for deep learning practitioners.",
"score": 0.623,
"note": "πŸ“š Solid research paper with useful findings but more limited scope and impact."
}
]
for paper in example_papers:
gr.Markdown(
f"""
#### {paper['title']}
**Score**: {paper['score']} | **Grade**: {get_grade_and_emoji(paper['score'])}
{paper['abstract']}
*{paper['note']}*
---
"""
)
# 이벀트 ν•Έλ“€λŸ¬ μ—°κ²°
title_input.change(update_button_status, [title_input, abstract_input], [status, submit_btn])
abstract_input.change(update_button_status, [title_input, abstract_input], [status, submit_btn])
fetch_btn.click(process_arxiv_input, [arxiv_input], [title_input, abstract_input, status])
def run_predict(t, a):
s = predict(t, a)
return s, get_grade_and_emoji(s)
submit_btn.click(run_predict, [title_input, abstract_input], [score_out, grade_out])
if __name__ == "__main__":
iface.launch()