Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,492 Bytes
d94f82b 3544bdd a12abfd 3544bdd fd896e6 1a19be7 a12abfd d94f82b fd896e6 d94f82b 3544bdd fd896e6 3544bdd a12abfd 8cbcecb a12abfd fd896e6 a12abfd fd896e6 3544bdd fd896e6 3544bdd d94f82b fd896e6 d94f82b fd896e6 d94f82b fd896e6 d94f82b fd896e6 d94f82b 8cbcecb fd896e6 1a19be7 fd896e6 1a19be7 fd896e6 6845a85 fd896e6 1a19be7 6845a85 8cbcecb fd896e6 1a19be7 6845a85 fd896e6 8cbcecb d94f82b fd896e6 8cbcecb fd896e6 8cbcecb fd896e6 8cbcecb fd896e6 8cbcecb fd896e6 d94f82b 8cbcecb d94f82b 8cbcecb d94f82b 3544bdd fd896e6 3544bdd fd896e6 3544bdd 8cbcecb 3544bdd 1a19be7 fd896e6 3544bdd fd896e6 92aeab1 fd896e6 89d4a33 d94f82b 3544bdd fd896e6 d94f82b fd896e6 d94f82b fd896e6 3544bdd fd896e6 3544bdd fd896e6 3544bdd d94f82b 3544bdd fd896e6 3544bdd 1a19be7 fd896e6 3544bdd 1a19be7 d94f82b fd896e6 d94f82b fd896e6 d94f82b fd896e6 d94f82b 1a19be7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import re
import requests
from urllib.parse import urlparse
import xml.etree.ElementTree as ET
# λͺ¨λΈ κ²½λ‘μ λλ°μ΄μ€ μ€μ
model_path = r'ssocean/NAIP'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# μ μ λ³μλ‘ λͺ¨λΈΒ·ν ν¬λμ΄μ μ μΈ
model = None
tokenizer = None
def fetch_arxiv_paper(arxiv_input):
"""arXiv URL λλ IDλ‘λΆν° μ λͺ©κ³Ό μμ½(fetch)"""
try:
if 'arxiv.org' in arxiv_input:
parsed = urlparse(arxiv_input)
arxiv_id = parsed.path.split('/')[-1].replace('.pdf', '')
else:
arxiv_id = arxiv_input.strip()
api_url = f'http://export.arxiv.org/api/query?id_list={arxiv_id}'
resp = requests.get(api_url)
if resp.status_code != 200:
return {"title":"", "abstract":"", "success":False, "message":"arXiv API μλ¬"}
root = ET.fromstring(resp.text)
ns = {'atom': 'http://www.w3.org/2005/Atom'}
entry = root.find('.//atom:entry', ns)
if entry is None:
return {"title":"", "abstract":"", "success":False, "message":"λ
Όλ¬Έμ μ°Ύμ μ μμ΅λλ€"}
title = entry.find('atom:title', ns).text.strip()
abstract = entry.find('atom:summary', ns).text.strip()
return {"title": title, "abstract": abstract, "success": True, "message": "μ±κ³΅μ μΌλ‘ κ°μ Έμμ΅λλ€!"}
except Exception as e:
return {"title":"", "abstract":"", "success":False, "message":f"μ€λ₯: {e}"}
@spaces.GPU(duration=60, enable_queue=True)
def predict(title, abstract):
"""λ
Όλ¬Έ μ λͺ©κ³Ό μμ½μ λ°μ 0~1 μ¬μ΄μ impact score μμΈ‘"""
global model, tokenizer
# μ΅μ΄ νΈμΆ μ λͺ¨λΈΒ·ν ν¬λμ΄μ λ‘λ
if model is None:
model = AutoModelForSequenceClassification.from_pretrained(
model_path,
num_labels=1,
quantization_config=None, # bitsandbytes μμν μμ λΉνμ±ν
torch_dtype=torch.float32, # μ λΆ float32
device_map=None, # accelerate dispatch λΉνμ±
low_cpu_mem_usage=False
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
model.to(device)
model.eval()
# μ
λ ₯ ν
μ€νΈ ꡬμ±
text = (
f"Given a certain paper,\n"
f"Title: {title.strip()}\n"
f"Abstract: {abstract.strip()}\n"
f"Predict its normalized academic impact (0~1):"
)
try:
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
prob = torch.sigmoid(outputs.logits).item()
score = min(1.0, prob + 0.05) # +0.05 보μ , μ΅λ 1.0
return round(score, 4)
except Exception as e:
print("Prediction error:", e)
return 0.0
def get_grade_and_emoji(score):
if score >= 0.900: return "AAA π"
if score >= 0.800: return "AA β"
if score >= 0.650: return "A β¨"
if score >= 0.600: return "BBB π΅"
if score >= 0.550: return "BB π"
if score >= 0.500: return "B π"
if score >= 0.400: return "CCC π"
if score >= 0.300: return "CC βοΈ"
return "C π"
def validate_input(title, abstract):
"""μ λͺ©Β·μμ½ κΈμ μ λ° λΉμμ΄ λ¬Έμ κ²μ¬"""
non_latin = re.compile(r'[^\u0000-\u007F]')
if len(title.split()) < 3:
return False, "μ λͺ©μ μ΅μ 3λ¨μ΄ μ΄μμ΄μ΄μΌ ν©λλ€."
if len(abstract.split()) < 50:
return False, "μμ½μ μ΅μ 50λ¨μ΄ μ΄μμ΄μ΄μΌ ν©λλ€."
if non_latin.search(title):
return False, "μ λͺ©μ μμ΄ μΈ λ¬Έμκ° ν¬ν¨λμμ΅λλ€."
if non_latin.search(abstract):
return False, "μμ½μ μμ΄ μΈ λ¬Έμκ° ν¬ν¨λμμ΅λλ€."
return True, "μ
λ ₯ μ ν¨ν©λλ€."
def update_button_status(title, abstract):
valid, msg = validate_input(title, abstract)
if not valid:
return gr.update(value="Error: " + msg), gr.update(interactive=False)
return gr.update(value=msg), gr.update(interactive=True)
def process_arxiv_input(arxiv_input):
if not arxiv_input.strip():
return "", "", "URL λλ IDλ₯Ό μ
λ ₯νμΈμ"
res = fetch_arxiv_paper(arxiv_input)
if res["success"]:
return res["title"], res["abstract"], res["message"]
return "", "", res["message"]
# CSS μ μ
css = """
.gradio-container {
font-family: 'Arial', sans-serif;
}
.main-title {
text-align: center;
color: #2563eb;
font-size: 2.5rem !important;
margin-bottom: 1rem !important;
background: linear-gradient(45deg, #2563eb, #1d4ed8);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
}
.sub-title {
text-align: center;
color: #4b5563;
font-size: 1.5rem !important;
margin-bottom: 2rem !important;
}
.input-section {
background: white;
padding: 2rem;
border-radius: 1rem;
box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1);
}
.result-section {
background: #f8fafc;
padding: 2rem;
border-radius: 1rem;
margin-top: 2rem;
}
.methodology-section {
background: #ecfdf5;
padding: 2rem;
border-radius: 1rem;
margin-top: 2rem;
}
.example-section {
background: #fff7ed;
padding: 2rem;
border-radius: 1rem;
margin-top: 2rem;
}
.grade-display {
font-size: 3rem;
text-align: center;
margin: 1rem 0;
}
.arxiv-input {
margin-bottom: 1.5rem;
padding: 1rem;
background: #f3f4f6;
border-radius: 0.5rem;
}
.arxiv-link {
color: #2563eb;
text-decoration: underline;
font-size: 0.9em;
margin-top: 0.5em;
}
.arxiv-note {
color: #666;
font-size: 0.9em;
margin-top: 0.5em;
margin-bottom: 0.5em;
}
"""
# Gradio UI ꡬμ±
with gr.Blocks(theme=gr.themes.Default(), css=css) as iface:
gr.Markdown(
"""
# Papers Impact: AI-Powered Research Impact Predictor
## https://discord.gg/openfreeai
""")
gr.HTML("""<a href="https://visitorbadge.io/status?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space&countColor=%23263759" />
</a>""")
with gr.Row():
with gr.Column(elem_classes="input-section"):
gr.Markdown("### π arXivμμ λΆλ¬μ€κΈ°")
arxiv_input = gr.Textbox(
lines=1,
placeholder="arXiv URL λλ ID",
label="arXiv URL/ID")
fetch_btn = gr.Button("π λΆλ¬μ€κΈ°", variant="secondary")
gr.Markdown("### π μ§μ μ
λ ₯")
title_input = gr.Textbox(
lines=2,
placeholder="λ
Όλ¬Έ μ λͺ© (μ΅μ 3λ¨μ΄)",
label="μ λͺ©")
abstract_input = gr.Textbox(
lines=5,
placeholder="λ
Όλ¬Έ μμ½ (μ΅μ 50λ¨μ΄)",
label="μμ½")
status = gr.Textbox(label="βοΈ μ
λ ₯ μν", interactive=False)
submit_btn = gr.Button("π― μμΈ‘νκΈ°", interactive=False, variant="primary")
with gr.Column(elem_classes="result-section"):
score_out = gr.Number(label="π― Impact Score")
grade_out = gr.Textbox(label="π Grade", elem_classes="grade-display")
with gr.Row(elem_classes="methodology-section"):
gr.Markdown(
"""
### π¬ Scientific Methodology
- **Training Data**: Model trained on extensive dataset of published papers from CS.CV, CS.CL(NLP), and CS.AI fields
- **Optimization**: NDCG optimization with Sigmoid activation and MSE loss function
- **Validation**: Cross-validated against historical paper impact data
- **Architecture**: Advanced transformer-based deep textual analysis
- **Metrics**: Quantitative analysis of citation patterns and research influence
"""
)
with gr.Row():
gr.Markdown(
"""
### π Rating Scale
| Grade | Score Range | Description | Indicator |
|-------|-------------|-------------|-----------|
| AAA | 0.900-1.000 | Exceptional Impact | π |
| AA | 0.800-0.899 | Very High Impact | β |
| A | 0.650-0.799 | High Impact | β¨ |
| BBB | 0.600-0.649 | Above Average | π΅ |
| BB | 0.550-0.599 | Moderate Impact | π |
| B | 0.500-0.549 | Average Impact | π |
| CCC | 0.400-0.499 | Below Average | π |
| CC | 0.300-0.399 | Low Impact | βοΈ |
| C | <0.299 | Limited Impact | π |
"""
)
with gr.Row(elem_classes="example-section"):
gr.Markdown("### π Example Papers")
example_papers = [
{
"title": "Attention Is All You Need",
"abstract": "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train.",
"score": 0.982,
"note": "π« Revolutionary paper that introduced the Transformer architecture, fundamentally changing NLP and deep learning."
},
{
"title": "Language Models are Few-Shot Learners",
"abstract": "Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches.",
"score": 0.956,
"note": "π Groundbreaking GPT-3 paper that demonstrated the power of large language models."
},
{
"title": "An Empirical Study of Neural Network Training Protocols",
"abstract": "This paper presents a comparative analysis of different training protocols for neural networks across various architectures. We examine the effects of learning rate schedules, batch size selection, and optimization algorithms on model convergence and final performance. Our experiments span multiple datasets and model sizes, providing practical insights for deep learning practitioners.",
"score": 0.623,
"note": "π Solid research paper with useful findings but more limited scope and impact."
}
]
for paper in example_papers:
gr.Markdown(
f"""
#### {paper['title']}
**Score**: {paper['score']} | **Grade**: {get_grade_and_emoji(paper['score'])}
{paper['abstract']}
*{paper['note']}*
---
"""
)
# μ΄λ²€νΈ νΈλ€λ¬ μ°κ²°
title_input.change(update_button_status, [title_input, abstract_input], [status, submit_btn])
abstract_input.change(update_button_status, [title_input, abstract_input], [status, submit_btn])
fetch_btn.click(process_arxiv_input, [arxiv_input], [title_input, abstract_input, status])
def run_predict(t, a):
s = predict(t, a)
return s, get_grade_and_emoji(s)
submit_btn.click(run_predict, [title_input, abstract_input], [score_out, grade_out])
if __name__ == "__main__":
iface.launch()
|