File size: 11,811 Bytes
d94f82b
 
 
 
e12f2d0
 
d94f82b
3544bdd
a12abfd
 
3544bdd
e12f2d0
9b9348c
a12abfd
d94f82b
e12f2d0
d94f82b
 
 
3544bdd
e12f2d0
3544bdd
a12abfd
 
8cbcecb
a12abfd
 
 
fd896e6
 
e12f2d0
fd896e6
e12f2d0
fd896e6
a12abfd
e12f2d0
fd896e6
 
e12f2d0
3544bdd
e12f2d0
3544bdd
d94f82b
 
e12f2d0
d94f82b
fd896e6
d94f82b
e12f2d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d94f82b
 
8cbcecb
e12f2d0
fd896e6
 
 
 
1a19be7
e12f2d0
 
 
 
 
 
 
d94f82b
 
 
 
 
 
 
 
 
 
 
 
 
e12f2d0
 
8cbcecb
e12f2d0
8cbcecb
e12f2d0
 
 
 
 
 
d94f82b
 
8cbcecb
d94f82b
8cbcecb
 
d94f82b
3544bdd
 
e12f2d0
fd896e6
 
 
 
3544bdd
 
 
 
 
8cbcecb
 
 
 
 
 
 
 
 
 
e12f2d0
8cbcecb
 
e12f2d0
8cbcecb
 
 
 
 
 
 
e12f2d0
8cbcecb
 
 
 
 
 
 
 
 
 
 
 
e12f2d0
8cbcecb
e12f2d0
8cbcecb
 
 
 
 
 
 
e12f2d0
8cbcecb
 
 
 
3544bdd
1a19be7
e12f2d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3544bdd
e12f2d0
 
 
 
 
 
89d4a33
d94f82b
3544bdd
e12f2d0
 
 
 
 
 
 
 
 
 
 
 
 
 
fd896e6
e12f2d0
d94f82b
 
e12f2d0
 
3334620
d94f82b
 
e12f2d0
 
3334620
e12f2d0
 
fd896e6
3544bdd
e12f2d0
 
3544bdd
 
e12f2d0
 
 
 
 
 
 
 
3544bdd
e12f2d0
 
 
 
 
 
 
 
 
 
 
 
 
 
d94f82b
3544bdd
e12f2d0
3544bdd
e12f2d0
 
 
 
 
 
 
d94f82b
e12f2d0
 
 
 
d94f82b
e12f2d0
fd896e6
 
d94f82b
e12f2d0
d94f82b
 
1a19be7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import torch.nn as nn
import re
import requests
from urllib.parse import urlparse
import xml.etree.ElementTree as ET

# Model repository and device setup
model_path = 'ssocean/NAIP'
device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Globals
model = None
tokenizer = None

def fetch_arxiv_paper(arxiv_input):
    """Fetch title & abstract from arXiv URL or ID."""
    try:
        if 'arxiv.org' in arxiv_input:
            parsed = urlparse(arxiv_input)
            arxiv_id = parsed.path.split('/')[-1].replace('.pdf', '')
        else:
            arxiv_id = arxiv_input.strip()
        api_url = f'http://export.arxiv.org/api/query?id_list={arxiv_id}'
        resp = requests.get(api_url)
        if resp.status_code != 200:
            return {"title":"", "abstract":"", "success":False, "message":"arXiv API error"}
        root = ET.fromstring(resp.text)
        ns = {'atom':'http://www.w3.org/2005/Atom'}
        entry = root.find('.//atom:entry', ns)
        if entry is None:
            return {"title":"", "abstract":"", "success":False, "message":"Paper not found"}
        title = entry.find('atom:title', ns).text.strip()
        abstract = entry.find('atom:summary', ns).text.strip()
        return {"title":title, "abstract":abstract, "success":True, "message":"Fetched successfully"}
    except Exception as e:
        return {"title":"", "abstract":"", "success":False, "message":f"Error: {e}"}

@spaces.GPU(duration=60, enable_queue=True)
def predict(title, abstract):
    """Predict a normalized impact score (0–1) from title & abstract."""
    global model, tokenizer

    if model is None:
        # Try loading full-precision on GPU first
        try:
            model = AutoModelForSequenceClassification.from_pretrained(
                model_path,
                num_labels=1,
                torch_dtype=torch.float32,
                device_map="auto"
            )
        except RuntimeError:
            # Fallback to CPU-only
            model = AutoModelForSequenceClassification.from_pretrained(
                model_path,
                num_labels=1,
                torch_dtype=torch.float32,
                device_map="cpu"
            )
        tokenizer = AutoTokenizer.from_pretrained(model_path)
        model.eval()

    prompt = (
        f"Given a certain paper,\n"
        f"Title: {title.strip()}\n"
        f"Abstract: {abstract.strip()}\n"
        f"Predict its normalized academic impact (0~1):"
    )
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
    inputs = {k: v.to(device) for k, v in inputs.items()}
    with torch.no_grad():
        logits = model(**inputs).logits
    prob = torch.sigmoid(logits).item()
    score = min(1.0, prob + 0.05)  # +0.05 adjustment
    return round(score, 4)

def get_grade_and_emoji(score):
    if score >= 0.900: return "AAA 🌟"
    if score >= 0.800: return "AA ⭐"
    if score >= 0.650: return "A ✨"
    if score >= 0.600: return "BBB πŸ”΅"
    if score >= 0.550: return "BB πŸ“˜"
    if score >= 0.500: return "B πŸ“–"
    if score >= 0.400: return "CCC πŸ“"
    if score >= 0.300: return "CC ✏️"
    return "C πŸ“‘"

def validate_input(title, abstract):
    """Ensure title β‰₯3 words, abstract β‰₯50 words, and ASCII-only."""
    non_ascii = re.compile(r'[^\x00-\x7F]')
    if len(title.split()) < 3:
        return False, "Title must be at least 3 words."
    if len(abstract.split()) < 50:
        return False, "Abstract must be at least 50 words."
    if non_ascii.search(title):
        return False, "Title contains non-ASCII characters."
    if non_ascii.search(abstract):
        return False, "Abstract contains non-ASCII characters."
    return True, "Inputs look good."

def update_button_status(title, abstract):
    valid, msg = validate_input(title, abstract)
    if not valid:
        return gr.update(value="Error: " + msg), gr.update(interactive=False)
    return gr.update(value=msg), gr.update(interactive=True)

def process_arxiv_input(arxiv_input):
    if not arxiv_input.strip():
        return "", "", "Please enter an arXiv URL or ID"
    res = fetch_arxiv_paper(arxiv_input)
    if res["success"]:
        return res["title"], res["abstract"], res["message"]
    return "", "", res["message"]

css = """
.gradio-container {
    font-family: 'Arial', sans-serif;
}
.main-title {
    text-align: center;
    color: #2563eb;
    font-size: 2.5rem !important;
    margin-bottom: 1rem !important;
    background: linear-gradient(45deg, #2563eb, #1d4ed8);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
}
.input-section {
    background: #ffffff;
    padding: 2rem;
    border-radius: 1rem;
    box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.result-section {
    background: #f8fafc;
    padding: 2rem;
    border-radius: 1rem;
    margin-top: 2rem;
}
.methodology-section, .example-section {
    background: #fff7ed;
    padding: 2rem;
    border-radius: 1rem;
    margin-top: 2rem;
}
.grade-display {
    font-size: 3rem;
    text-align: center;
    margin: 1rem 0;
}
.arxiv-input {
    background: #f3f4f6;
    padding: 1rem;
    border-radius: 0.5rem;
    margin-bottom: 1.5rem;
}
.arxiv-link {
    color: #2563eb;
    text-decoration: underline;
    font-size: 0.9em;
}
.arxiv-note {
    color: #666666;
    font-size: 0.9em;
    margin-top: 0.5em;
    margin-bottom: 0.5em;
}
"""

example_papers = [
    {
        "title": "Attention Is All You Need",
        "abstract": "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train.",
        "score": 0.982,
        "note": "Revolutionary paper introducing the Transformer architecture."
    },
    {
        "title": "Language Models are Few-Shot Learners",
        "abstract": "Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructionsβ€”something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches.",
        "score": 0.956,
        "note": "Groundbreaking GPT-3 paper on few-shot learning."
    },
    {
        "title": "An Empirical Study of Neural Network Training Protocols",
        "abstract": "This paper presents a comparative analysis of different training protocols for neural networks across various architectures. We examine the effects of learning rate schedules, batch size selection, and optimization algorithms on model convergence and final performance. Our experiments span multiple datasets and model sizes, providing practical insights for deep learning practitioners.",
        "score": 0.623,
        "note": "Solid empirical comparison of training protocols."
    }
]

with gr.Blocks(theme=gr.themes.Default(), css=css) as iface:
    gr.Markdown("<div class='main-title'>Papers Impact: AI-Powered Research Impact Predictor</div>")
    gr.HTML("""
<a href="https://visitorbadge.io/status?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space">
  <img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2FVIDraft-PaperImpact.hf.space&countColor=%23263759" />
</a>
""")

    with gr.Row():
        with gr.Column(elem_classes="input-section"):
            with gr.Group(elem_classes="arxiv-input"):
                gr.Markdown("### Import from arXiv")
                arxiv_input = gr.Textbox(
                    lines=1,
                    placeholder="e.g. 2504.11651",
                    label="arXiv URL or ID",
                    value="2504.11651"
                )
                gr.Markdown("""
                <p class="arxiv-note">
                  Click to use the default example or visit <a href="https://arxiv.org" class="arxiv-link" target="_blank">arxiv.org</a>
                </p>
                """)
                fetch_button = gr.Button("πŸ” Fetch Paper Details", variant="secondary")

            gr.Markdown("### Or Enter Paper Details Manually")
            title_input = gr.Textbox(
                lines=2,
                placeholder="Enter paper title (minimum 3 words)...",
                label="Paper Title"
            )
            abstract_input = gr.Textbox(
                lines=5,
                placeholder="Enter paper abstract (minimum 50 words)...",
                label="Paper Abstract"
            )
            validation_status = gr.Textbox(label="Validation Status", interactive=False)
            submit_button = gr.Button("🎯 Predict Impact", interactive=False, variant="primary")

        with gr.Column(elem_classes="result-section"):
            score_output = gr.Number(label="Impact Score")
            grade_output = gr.Textbox(label="Grade", elem_classes="grade-display")

    with gr.Row(elem_classes="methodology-section"):
        gr.Markdown("""
### Scientific Methodology
- **Training Data**: Papers from CS.CV, CS.CL (NLP), and CS.AI fields  
- **Optimization**: NDCG optimization with Sigmoid activation & MSE loss  
- **Validation**: Cross-validated on historical citation data  
- **Architecture**: Transformer-based text encoder  
- **Metrics**: Citation-pattern analysis & research influence
        """)

    gr.Markdown("""
### Rating Scale
| Grade | Score Range | Description         | Emoji |
|-------|-------------|---------------------|-------|
| AAA   | 0.900–1.000 | Exceptional Impact  | 🌟    |
| AA    | 0.800–0.899 | Very High Impact    | ⭐    |
| A     | 0.650–0.799 | High Impact         | ✨    |
| BBB   | 0.600–0.649 | Above Average       | πŸ”΅    |
| BB    | 0.550–0.599 | Moderate Impact     | πŸ“˜    |
| B     | 0.500–0.549 | Average Impact      | πŸ“–    |
| CCC   | 0.400–0.499 | Below Average       | πŸ“    |
| CC    | 0.300–0.399 | Low Impact          | ✏️    |
| C     | <0.300      | Limited Impact      | πŸ“‘    |
    """)

    with gr.Row(elem_classes="example-section"):
        gr.Markdown("### Example Papers")
        for paper in example_papers:
            gr.Markdown(f"""
#### {paper['title']}
**Score**: {paper['score']} | **Grade**: {get_grade_and_emoji(paper['score'])}  
{paper['abstract']}  
*{paper['note']}*  
---
            """)

    # Event handlers
    title_input.change(update_button_status, [title_input, abstract_input], [validation_status, submit_button])
    abstract_input.change(update_button_status, [title_input, abstract_input], [validation_status, submit_button])
    fetch_button.click(process_arxiv_input, [arxiv_input], [title_input, abstract_input, validation_status])

    def run_prediction(t, a):
        s = predict(t, a)
        return s, get_grade_and_emoji(s)

    submit_button.click(run_prediction, [title_input, abstract_input], [score_output, grade_output])

if __name__ == "__main__":
    iface.launch()