Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,12 @@
|
|
|
|
|
|
|
|
1 |
#!/usr/bin/env python
|
2 |
|
3 |
import os
|
4 |
import re
|
5 |
import tempfile
|
|
|
6 |
from collections.abc import Iterator
|
7 |
from threading import Thread
|
8 |
import json
|
@@ -20,6 +24,15 @@ import pandas as pd
|
|
20 |
# PDF ํ
์คํธ ์ถ์ถ
|
21 |
import PyPDF2
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
##############################################################################
|
24 |
# SERPHouse API key from environment variable
|
25 |
##############################################################################
|
@@ -122,13 +135,11 @@ def do_web_search(query: str) -> str:
|
|
122 |
# ๋ชจ๋ธ์๊ฒ ๋ช
ํํ ์ง์นจ ์ถ๊ฐ
|
123 |
instructions = """
|
124 |
# ์น ๊ฒ์ ๊ฒฐ๊ณผ
|
125 |
-
|
126 |
์๋๋ ๊ฒ์ ๊ฒฐ๊ณผ์
๋๋ค. ์ง๋ฌธ์ ๋ต๋ณํ ๋ ์ด ์ ๋ณด๋ฅผ ํ์ฉํ์ธ์:
|
127 |
1. ๊ฐ ๊ฒฐ๊ณผ์ ์ ๋ชฉ, ๋ด์ฉ, ์ถ์ฒ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ์ธ์
|
128 |
2. ๋ต๋ณ์ ๊ด๋ จ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ช
์์ ์ผ๋ก ์ธ์ฉํ์ธ์ (์: "X ์ถ์ฒ์ ๋ฐ๋ฅด๋ฉด...")
|
129 |
3. ์๋ต์ ์ค์ ์ถ์ฒ ๋งํฌ๋ฅผ ํฌํจํ์ธ์
|
130 |
4. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข
ํฉํ์ฌ ๋ต๋ณํ์ธ์
|
131 |
-
|
132 |
"""
|
133 |
|
134 |
search_results = instructions + "\n".join(summary_lines)
|
@@ -144,14 +155,15 @@ def do_web_search(query: str) -> str:
|
|
144 |
# ๋ชจ๋ธ/ํ๋ก์ธ์ ๋ก๋ฉ
|
145 |
##############################################################################
|
146 |
MAX_CONTENT_CHARS = 4000
|
147 |
-
|
|
|
148 |
|
149 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
150 |
model = Gemma3ForConditionalGeneration.from_pretrained(
|
151 |
model_id,
|
152 |
device_map="auto",
|
153 |
torch_dtype=torch.bfloat16,
|
154 |
-
attn_implementation="eager"
|
155 |
)
|
156 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
157 |
|
@@ -284,7 +296,7 @@ def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
|
284 |
|
285 |
|
286 |
##############################################################################
|
287 |
-
# ๋น๋์ค ์ฒ๋ฆฌ
|
288 |
##############################################################################
|
289 |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
290 |
vidcap = cv2.VideoCapture(video_path)
|
@@ -298,6 +310,8 @@ def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
|
298 |
success, image = vidcap.read()
|
299 |
if success:
|
300 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
|
|
301 |
pil_image = Image.fromarray(image)
|
302 |
timestamp = round(i / fps, 2)
|
303 |
frames.append((pil_image, timestamp))
|
@@ -308,17 +322,20 @@ def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
|
308 |
return frames
|
309 |
|
310 |
|
311 |
-
def process_video(video_path: str) -> list[dict]:
|
312 |
content = []
|
|
|
|
|
313 |
frames = downsample_video(video_path)
|
314 |
for frame in frames:
|
315 |
pil_image, timestamp = frame
|
316 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
317 |
pil_image.save(temp_file.name)
|
|
|
318 |
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
319 |
content.append({"type": "image", "url": temp_file.name})
|
320 |
-
|
321 |
-
return content
|
322 |
|
323 |
|
324 |
##############################################################################
|
@@ -360,9 +377,11 @@ def is_document_file(file_path: str) -> bool:
|
|
360 |
)
|
361 |
|
362 |
|
363 |
-
def process_new_user_message(message: dict) -> list[dict]:
|
|
|
|
|
364 |
if not message["files"]:
|
365 |
-
return [{"type": "text", "text": message["text"]}]
|
366 |
|
367 |
video_files = [f for f in message["files"] if is_video_file(f)]
|
368 |
image_files = [f for f in message["files"] if is_image_file(f)]
|
@@ -385,19 +404,21 @@ def process_new_user_message(message: dict) -> list[dict]:
|
|
385 |
content_list.append({"type": "text", "text": pdf_markdown})
|
386 |
|
387 |
if video_files:
|
388 |
-
|
389 |
-
|
|
|
|
|
390 |
|
391 |
if "<image>" in message["text"] and image_files:
|
392 |
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
|
393 |
if content_list and content_list[0]["type"] == "text":
|
394 |
content_list = content_list[1:]
|
395 |
-
return interleaved_content + content_list
|
396 |
else:
|
397 |
for img_path in image_files:
|
398 |
content_list.append({"type": "image", "url": img_path})
|
399 |
|
400 |
-
return content_list
|
401 |
|
402 |
|
403 |
##############################################################################
|
@@ -429,6 +450,25 @@ def process_history(history: list[dict]) -> list[dict]:
|
|
429 |
return messages
|
430 |
|
431 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
##############################################################################
|
433 |
# ๋ฉ์ธ ์ถ๋ก ํจ์ (web search ์ฒดํฌ ์ ์๋ ํค์๋์ถ์ถ->๊ฒ์->๊ฒฐ๊ณผ system msg)
|
434 |
##############################################################################
|
@@ -446,6 +486,8 @@ def run(
|
|
446 |
yield ""
|
447 |
return
|
448 |
|
|
|
|
|
449 |
try:
|
450 |
combined_system_msg = ""
|
451 |
|
@@ -481,7 +523,9 @@ def run(
|
|
481 |
|
482 |
messages.extend(process_history(history))
|
483 |
|
484 |
-
user_content = process_new_user_message(message)
|
|
|
|
|
485 |
for item in user_content:
|
486 |
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
|
487 |
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
@@ -494,7 +538,13 @@ def run(
|
|
494 |
return_dict=True,
|
495 |
return_tensors="pt",
|
496 |
).to(device=model.device, dtype=torch.bfloat16)
|
497 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
498 |
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
499 |
gen_kwargs = dict(
|
500 |
inputs,
|
@@ -513,22 +563,24 @@ def run(
|
|
513 |
except Exception as e:
|
514 |
logger.error(f"Error in run: {str(e)}")
|
515 |
yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
|
|
|
|
532 |
|
533 |
|
534 |
##############################################################################
|
@@ -632,12 +684,10 @@ css = """
|
|
632 |
width: 100% !important;
|
633 |
max-width: none !important; /* 1200px ์ ํ ์ ๊ฑฐ */
|
634 |
}
|
635 |
-
|
636 |
.fillable {
|
637 |
width: 100% !important;
|
638 |
max-width: 100% !important;
|
639 |
}
|
640 |
-
|
641 |
/* 2) ๋ฐฐ๊ฒฝ์ ์ฐํ๊ณ ํฌ๋ช
ํ ํ์คํ
ํค ๊ทธ๋ผ๋์ธํธ๋ก ๋ณ๊ฒฝ */
|
642 |
body {
|
643 |
background: #f5f5f5; /* ๊ทธ๋ผ๋์ธํธ ๋์ ๋จ์ ์ฌ์ฉ */
|
@@ -646,7 +696,6 @@ body {
|
|
646 |
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
|
647 |
color: #333;
|
648 |
}
|
649 |
-
|
650 |
/* ๋ฒํผ ์์๋ ๊ธฐ์กด์ ์ง์ ๋ถ์-์ฃผํฉ โ ํ์คํ
๊ณ์ด๋ก ์ฐ๏ฟฝ๏ฟฝ๏ฟฝ๊ฒ */
|
651 |
button, .btn {
|
652 |
background: #ffb6c1 !important; /* ๊ทธ๋ผ๋์ธํธ ๋์ ๋จ์ ์ฌ์ฉ */
|
@@ -660,24 +709,21 @@ button, .btn {
|
|
660 |
cursor: pointer;
|
661 |
/* transition: transform 0.2s ease-in-out; - ํน์ ๋ชจ๋ฅผ ๋ฌธ์ ๋ถ๋ถ ์ ๊ฑฐ */
|
662 |
}
|
663 |
-
|
664 |
button:hover, .btn:hover {
|
665 |
/* transform: scale(1.03); - ํน์ ๋ชจ๋ฅผ ๋ฌธ์ ๋ถ๋ถ ์ ๊ฑฐ */
|
666 |
background: #ff69b4 !important;
|
667 |
}
|
668 |
-
|
669 |
#examples_container {
|
670 |
margin: auto;
|
671 |
width: 90%;
|
672 |
}
|
673 |
-
|
674 |
#examples_row {
|
675 |
justify-content: center;
|
676 |
}
|
677 |
"""
|
678 |
|
679 |
title_html = """
|
680 |
-
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐ค Gemma3-uncensored-
|
681 |
<p align="center" style="font-size:1.1em; color:#555;">
|
682 |
โ
Agentic AI Platform โ
Reasoning & Uncensored โ
Multimodal & VLM โ
Deep-Research & RAG <br>
|
683 |
Operates on an โ
'NVIDIA A100 GPU' as an independent local server, enhancing security and preventing information leakage.<br>
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
#!/usr/bin/env python
|
5 |
|
6 |
import os
|
7 |
import re
|
8 |
import tempfile
|
9 |
+
import gc # garbage collector ์ถ๊ฐ
|
10 |
from collections.abc import Iterator
|
11 |
from threading import Thread
|
12 |
import json
|
|
|
24 |
# PDF ํ
์คํธ ์ถ์ถ
|
25 |
import PyPDF2
|
26 |
|
27 |
+
##############################################################################
|
28 |
+
# ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ ํจ์ ์ถ๊ฐ
|
29 |
+
##############################################################################
|
30 |
+
def clear_cuda_cache():
|
31 |
+
"""CUDA ์บ์๋ฅผ ๋ช
์์ ์ผ๋ก ๋น์๋๋ค."""
|
32 |
+
if torch.cuda.is_available():
|
33 |
+
torch.cuda.empty_cache()
|
34 |
+
gc.collect()
|
35 |
+
|
36 |
##############################################################################
|
37 |
# SERPHouse API key from environment variable
|
38 |
##############################################################################
|
|
|
135 |
# ๋ชจ๋ธ์๊ฒ ๋ช
ํํ ์ง์นจ ์ถ๊ฐ
|
136 |
instructions = """
|
137 |
# ์น ๊ฒ์ ๊ฒฐ๊ณผ
|
|
|
138 |
์๋๋ ๊ฒ์ ๊ฒฐ๊ณผ์
๋๋ค. ์ง๋ฌธ์ ๋ต๋ณํ ๋ ์ด ์ ๋ณด๋ฅผ ํ์ฉํ์ธ์:
|
139 |
1. ๊ฐ ๊ฒฐ๊ณผ์ ์ ๋ชฉ, ๋ด์ฉ, ์ถ์ฒ ๋งํฌ๋ฅผ ์ฐธ๊ณ ํ์ธ์
|
140 |
2. ๋ต๋ณ์ ๊ด๋ จ ์ ๋ณด์ ์ถ์ฒ๋ฅผ ๋ช
์์ ์ผ๋ก ์ธ์ฉํ์ธ์ (์: "X ์ถ์ฒ์ ๋ฐ๋ฅด๋ฉด...")
|
141 |
3. ์๋ต์ ์ค์ ์ถ์ฒ ๋งํฌ๋ฅผ ํฌํจํ์ธ์
|
142 |
4. ์ฌ๋ฌ ์ถ์ฒ์ ์ ๋ณด๋ฅผ ์ข
ํฉํ์ฌ ๋ต๋ณํ์ธ์
|
|
|
143 |
"""
|
144 |
|
145 |
search_results = instructions + "\n".join(summary_lines)
|
|
|
155 |
# ๋ชจ๋ธ/ํ๋ก์ธ์ ๋ก๋ฉ
|
156 |
##############################################################################
|
157 |
MAX_CONTENT_CHARS = 4000
|
158 |
+
MAX_INPUT_LENGTH = 4096 # ์ต๋ ์
๋ ฅ ํ ํฐ ์ ์ ํ ์ถ๊ฐ
|
159 |
+
model_id = os.getenv("MODEL_ID", "mlabonne/gemma-3-27b-it-abliterated")
|
160 |
|
161 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
162 |
model = Gemma3ForConditionalGeneration.from_pretrained(
|
163 |
model_id,
|
164 |
device_map="auto",
|
165 |
torch_dtype=torch.bfloat16,
|
166 |
+
attn_implementation="eager" # ๊ฐ๋ฅํ๋ค๋ฉด "flash_attention_2"๋ก ๋ณ๊ฒฝ
|
167 |
)
|
168 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
169 |
|
|
|
296 |
|
297 |
|
298 |
##############################################################################
|
299 |
+
# ๋น๋์ค ์ฒ๋ฆฌ - ์์ ํ์ผ ์ถ์ ์ฝ๋ ์ถ๊ฐ
|
300 |
##############################################################################
|
301 |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
302 |
vidcap = cv2.VideoCapture(video_path)
|
|
|
310 |
success, image = vidcap.read()
|
311 |
if success:
|
312 |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
313 |
+
# ์ด๋ฏธ์ง ํฌ๊ธฐ ์ค์ด๊ธฐ ์ถ๊ฐ
|
314 |
+
image = cv2.resize(image, (0, 0), fx=0.5, fy=0.5)
|
315 |
pil_image = Image.fromarray(image)
|
316 |
timestamp = round(i / fps, 2)
|
317 |
frames.append((pil_image, timestamp))
|
|
|
322 |
return frames
|
323 |
|
324 |
|
325 |
+
def process_video(video_path: str) -> tuple[list[dict], list[str]]:
|
326 |
content = []
|
327 |
+
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ ์ํ ๋ฆฌ์คํธ
|
328 |
+
|
329 |
frames = downsample_video(video_path)
|
330 |
for frame in frames:
|
331 |
pil_image, timestamp = frame
|
332 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file:
|
333 |
pil_image.save(temp_file.name)
|
334 |
+
temp_files.append(temp_file.name) # ์ถ์ ์ ์ํด ๊ฒฝ๋ก ์ ์ฅ
|
335 |
content.append({"type": "text", "text": f"Frame {timestamp}:"})
|
336 |
content.append({"type": "image", "url": temp_file.name})
|
337 |
+
|
338 |
+
return content, temp_files
|
339 |
|
340 |
|
341 |
##############################################################################
|
|
|
377 |
)
|
378 |
|
379 |
|
380 |
+
def process_new_user_message(message: dict) -> tuple[list[dict], list[str]]:
|
381 |
+
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ฉ ๋ฆฌ์คํธ
|
382 |
+
|
383 |
if not message["files"]:
|
384 |
+
return [{"type": "text", "text": message["text"]}], temp_files
|
385 |
|
386 |
video_files = [f for f in message["files"] if is_video_file(f)]
|
387 |
image_files = [f for f in message["files"] if is_image_file(f)]
|
|
|
404 |
content_list.append({"type": "text", "text": pdf_markdown})
|
405 |
|
406 |
if video_files:
|
407 |
+
video_content, video_temp_files = process_video(video_files[0])
|
408 |
+
content_list += video_content
|
409 |
+
temp_files.extend(video_temp_files)
|
410 |
+
return content_list, temp_files
|
411 |
|
412 |
if "<image>" in message["text"] and image_files:
|
413 |
interleaved_content = process_interleaved_images({"text": message["text"], "files": image_files})
|
414 |
if content_list and content_list[0]["type"] == "text":
|
415 |
content_list = content_list[1:]
|
416 |
+
return interleaved_content + content_list, temp_files
|
417 |
else:
|
418 |
for img_path in image_files:
|
419 |
content_list.append({"type": "image", "url": img_path})
|
420 |
|
421 |
+
return content_list, temp_files
|
422 |
|
423 |
|
424 |
##############################################################################
|
|
|
450 |
return messages
|
451 |
|
452 |
|
453 |
+
##############################################################################
|
454 |
+
# ๋ชจ๋ธ ์์ฑ ํจ์์์ OOM ์บ์น
|
455 |
+
##############################################################################
|
456 |
+
def _model_gen_with_oom_catch(**kwargs):
|
457 |
+
"""
|
458 |
+
๋ณ๋ ์ค๋ ๋์์ OutOfMemoryError๋ฅผ ์ก์์ฃผ๊ธฐ ์ํด
|
459 |
+
"""
|
460 |
+
try:
|
461 |
+
model.generate(**kwargs)
|
462 |
+
except torch.cuda.OutOfMemoryError:
|
463 |
+
raise RuntimeError(
|
464 |
+
"[OutOfMemoryError] GPU ๋ฉ๋ชจ๋ฆฌ๊ฐ ๋ถ์กฑํฉ๋๋ค. "
|
465 |
+
"Max New Tokens์ ์ค์ด๊ฑฐ๋, ํ๋กฌํํธ ๊ธธ์ด๋ฅผ ์ค์ฌ์ฃผ์ธ์."
|
466 |
+
)
|
467 |
+
finally:
|
468 |
+
# ์์ฑ ์๋ฃ ํ ํ๋ฒ ๋ ์บ์ ๋น์ฐ๊ธฐ
|
469 |
+
clear_cuda_cache()
|
470 |
+
|
471 |
+
|
472 |
##############################################################################
|
473 |
# ๋ฉ์ธ ์ถ๋ก ํจ์ (web search ์ฒดํฌ ์ ์๋ ํค์๋์ถ์ถ->๊ฒ์->๊ฒฐ๊ณผ system msg)
|
474 |
##############################################################################
|
|
|
486 |
yield ""
|
487 |
return
|
488 |
|
489 |
+
temp_files = [] # ์์ ํ์ผ ์ถ์ ์ฉ
|
490 |
+
|
491 |
try:
|
492 |
combined_system_msg = ""
|
493 |
|
|
|
523 |
|
524 |
messages.extend(process_history(history))
|
525 |
|
526 |
+
user_content, user_temp_files = process_new_user_message(message)
|
527 |
+
temp_files.extend(user_temp_files) # ์์ ํ์ผ ์ถ์
|
528 |
+
|
529 |
for item in user_content:
|
530 |
if item["type"] == "text" and len(item["text"]) > MAX_CONTENT_CHARS:
|
531 |
item["text"] = item["text"][:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
|
|
538 |
return_dict=True,
|
539 |
return_tensors="pt",
|
540 |
).to(device=model.device, dtype=torch.bfloat16)
|
541 |
+
|
542 |
+
# ์
๋ ฅ ํ ํฐ ์ ์ ํ ์ถ๊ฐ
|
543 |
+
if inputs.input_ids.shape[1] > MAX_INPUT_LENGTH:
|
544 |
+
inputs.input_ids = inputs.input_ids[:, -MAX_INPUT_LENGTH:]
|
545 |
+
if 'attention_mask' in inputs:
|
546 |
+
inputs.attention_mask = inputs.attention_mask[:, -MAX_INPUT_LENGTH:]
|
547 |
+
|
548 |
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
549 |
gen_kwargs = dict(
|
550 |
inputs,
|
|
|
563 |
except Exception as e:
|
564 |
logger.error(f"Error in run: {str(e)}")
|
565 |
yield f"์ฃ์กํฉ๋๋ค. ์ค๋ฅ๊ฐ ๋ฐ์ํ์ต๋๋ค: {str(e)}"
|
566 |
+
|
567 |
+
finally:
|
568 |
+
# ์์ ํ์ผ ์ญ์
|
569 |
+
for temp_file in temp_files:
|
570 |
+
try:
|
571 |
+
if os.path.exists(temp_file):
|
572 |
+
os.unlink(temp_file)
|
573 |
+
logger.info(f"Deleted temp file: {temp_file}")
|
574 |
+
except Exception as e:
|
575 |
+
logger.warning(f"Failed to delete temp file {temp_file}: {e}")
|
576 |
+
|
577 |
+
# ๋ช
์์ ๋ฉ๋ชจ๋ฆฌ ์ ๋ฆฌ
|
578 |
+
try:
|
579 |
+
del inputs, streamer
|
580 |
+
except:
|
581 |
+
pass
|
582 |
+
|
583 |
+
clear_cuda_cache()
|
584 |
|
585 |
|
586 |
##############################################################################
|
|
|
684 |
width: 100% !important;
|
685 |
max-width: none !important; /* 1200px ์ ํ ์ ๊ฑฐ */
|
686 |
}
|
|
|
687 |
.fillable {
|
688 |
width: 100% !important;
|
689 |
max-width: 100% !important;
|
690 |
}
|
|
|
691 |
/* 2) ๋ฐฐ๊ฒฝ์ ์ฐํ๊ณ ํฌ๋ช
ํ ํ์คํ
ํค ๊ทธ๋ผ๋์ธํธ๋ก ๋ณ๊ฒฝ */
|
692 |
body {
|
693 |
background: #f5f5f5; /* ๊ทธ๋ผ๋์ธํธ ๋์ ๋จ์ ์ฌ์ฉ */
|
|
|
696 |
font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
|
697 |
color: #333;
|
698 |
}
|
|
|
699 |
/* ๋ฒํผ ์์๋ ๊ธฐ์กด์ ์ง์ ๋ถ์-์ฃผํฉ โ ํ์คํ
๊ณ์ด๋ก ์ฐ๏ฟฝ๏ฟฝ๏ฟฝ๊ฒ */
|
700 |
button, .btn {
|
701 |
background: #ffb6c1 !important; /* ๊ทธ๋ผ๋์ธํธ ๋์ ๋จ์ ์ฌ์ฉ */
|
|
|
709 |
cursor: pointer;
|
710 |
/* transition: transform 0.2s ease-in-out; - ํน์ ๋ชจ๋ฅผ ๋ฌธ์ ๋ถ๋ถ ์ ๊ฑฐ */
|
711 |
}
|
|
|
712 |
button:hover, .btn:hover {
|
713 |
/* transform: scale(1.03); - ํน์ ๋ชจ๋ฅผ ๋ฌธ์ ๋ถ๋ถ ์ ๊ฑฐ */
|
714 |
background: #ff69b4 !important;
|
715 |
}
|
|
|
716 |
#examples_container {
|
717 |
margin: auto;
|
718 |
width: 90%;
|
719 |
}
|
|
|
720 |
#examples_row {
|
721 |
justify-content: center;
|
722 |
}
|
723 |
"""
|
724 |
|
725 |
title_html = """
|
726 |
+
<h1 align="center" style="margin-bottom: 0.2em; font-size: 1.6em;"> ๐ค Gemma3-uncensored-R12B </h1>
|
727 |
<p align="center" style="font-size:1.1em; color:#555;">
|
728 |
โ
Agentic AI Platform โ
Reasoning & Uncensored โ
Multimodal & VLM โ
Deep-Research & RAG <br>
|
729 |
Operates on an โ
'NVIDIA A100 GPU' as an independent local server, enhancing security and preventing information leakage.<br>
|