Spaces:
Running
on
Zero
Running
on
Zero
Update app-backup.py
Browse files- app-backup.py +85 -19
app-backup.py
CHANGED
@@ -14,6 +14,9 @@ from loguru import logger
|
|
14 |
from PIL import Image
|
15 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
16 |
|
|
|
|
|
|
|
17 |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
18 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
19 |
model = Gemma3ForConditionalGeneration.from_pretrained(
|
@@ -48,10 +51,20 @@ def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
|
48 |
|
49 |
|
50 |
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
history_image_count, history_video_count = count_files_in_history(history)
|
53 |
image_count = history_image_count + new_image_count
|
54 |
video_count = history_video_count + new_video_count
|
|
|
55 |
if video_count > 1:
|
56 |
gr.Warning("Only one video is supported.")
|
57 |
return False
|
@@ -63,12 +76,21 @@ def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
|
63 |
gr.Warning("Using <image> tags with video files is not supported.")
|
64 |
return False
|
65 |
# TODO: Add frame count validation for videos similar to image count limits # noqa: FIX002, TD002, TD003
|
|
|
66 |
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
67 |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
68 |
return False
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
return True
|
73 |
|
74 |
|
@@ -127,20 +149,65 @@ def process_interleaved_images(message: dict) -> list[dict]:
|
|
127 |
return content
|
128 |
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
def process_new_user_message(message: dict) -> list[dict]:
|
|
|
|
|
|
|
131 |
if not message["files"]:
|
132 |
return [{"type": "text", "text": message["text"]}]
|
133 |
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
if "<image>" in message["text"]:
|
138 |
return process_interleaved_images(message)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
144 |
|
145 |
|
146 |
def process_history(history: list[dict]) -> list[dict]:
|
@@ -318,26 +385,25 @@ examples = [
|
|
318 |
],
|
319 |
]
|
320 |
|
321 |
-
DESCRIPTION = """\
|
322 |
-
<img src='https://huggingface.co/spaces/huggingface-projects/gemma-3-12b-it/resolve/main/assets/logo.png' id='logo' />
|
323 |
|
324 |
-
This is a demo of Gemma 3 27B it, a vision language model with outstanding performance on a wide range of tasks.
|
325 |
-
You can upload images, interleaved images and videos. Note that video input only supports single-turn conversation and mp4 input.
|
326 |
-
"""
|
327 |
|
|
|
328 |
demo = gr.ChatInterface(
|
329 |
fn=run,
|
330 |
type="messages",
|
331 |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
332 |
-
textbox=gr.MultimodalTextbox(
|
|
|
|
|
|
|
|
|
333 |
multimodal=True,
|
334 |
additional_inputs=[
|
335 |
-
gr.Textbox(label="System Prompt", value="
|
336 |
-
gr.Slider(label="Max New Tokens", minimum=100, maximum=
|
337 |
],
|
338 |
stop_btn=False,
|
339 |
title="Gemma 3 27B IT",
|
340 |
-
description=DESCRIPTION,
|
341 |
examples=examples,
|
342 |
run_examples_on_click=False,
|
343 |
cache_examples=False,
|
|
|
14 |
from PIL import Image
|
15 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
16 |
|
17 |
+
# [PDF] PyPDF2 ์ถ๊ฐ
|
18 |
+
import PyPDF2
|
19 |
+
|
20 |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
21 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
22 |
model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
|
51 |
|
52 |
|
53 |
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
54 |
+
"""
|
55 |
+
์ด๋ฏธ์ง/๋น๋์ค ๊ฐ์์ ํผํฉ ์ฌ๋ถ ๋ฑ์ ๊ฒ์ฌํ๋ ํจ์.
|
56 |
+
PDF๋ ๊ฒ์ฌ ๋ก์ง์์ ์ ์ธํ์ฌ ์
๋ก๋๋ง ํ์ฉ.
|
57 |
+
"""
|
58 |
+
# [PDF] PDF ํ์ผ ์ ์ธ ์ฒ๋ฆฌ
|
59 |
+
pdf_files = [f for f in message["files"] if f.endswith(".pdf")]
|
60 |
+
non_pdf_files = [f for f in message["files"] if not f.endswith(".pdf")]
|
61 |
+
|
62 |
+
# ๊ธฐ์กด ๋ก์ง์ non_pdf_files(= ์ด๋ฏธ์ง/๋น๋์ค)์ ๋ํด์๋ง ์ฒดํฌ
|
63 |
+
new_image_count, new_video_count = count_files_in_new_message(non_pdf_files)
|
64 |
history_image_count, history_video_count = count_files_in_history(history)
|
65 |
image_count = history_image_count + new_image_count
|
66 |
video_count = history_video_count + new_video_count
|
67 |
+
|
68 |
if video_count > 1:
|
69 |
gr.Warning("Only one video is supported.")
|
70 |
return False
|
|
|
76 |
gr.Warning("Using <image> tags with video files is not supported.")
|
77 |
return False
|
78 |
# TODO: Add frame count validation for videos similar to image count limits # noqa: FIX002, TD002, TD003
|
79 |
+
|
80 |
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
81 |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
82 |
return False
|
83 |
+
|
84 |
+
# [PDF] PDF ๊ฐฏ์ ์ ํ(ํ์ํ๋ค๋ฉด)๋ ์ถ๊ฐ ๊ฐ๋ฅ
|
85 |
+
# ์ผ๋จ ์ ํ์ ๋์ง ์๊ณ ๋ฐ๋ก True ๋ฐํ
|
86 |
+
|
87 |
+
# <image> ํ๊ทธ๊ฐ ์์ ๊ฒฝ์ฐ, ์ด๋ฏธ์ง ๊ฐ์์ ๋งค์นญ ๊ฒ์ฌ
|
88 |
+
if "<image>" in message["text"]:
|
89 |
+
# new_image_count๋ pdf ์ ์ธ๋ ์ด๋ฏธ์ง ์
|
90 |
+
if message["text"].count("<image>") != new_image_count:
|
91 |
+
gr.Warning("The number of <image> tags in the text does not match the number of images.")
|
92 |
+
return False
|
93 |
+
|
94 |
return True
|
95 |
|
96 |
|
|
|
149 |
return content
|
150 |
|
151 |
|
152 |
+
# [PDF] PDF -> Markdown ๋ณํ ํจ์ ์ถ๊ฐ
|
153 |
+
def pdf_to_markdown(pdf_path: str) -> str:
|
154 |
+
"""
|
155 |
+
PDF ํ์ผ์ ํ
์คํธ๋ก ์ถ์ถ ํ, ๊ฐ๋จํ Markdown ํํ๋ก ๋ฐํ.
|
156 |
+
"""
|
157 |
+
text_chunks = []
|
158 |
+
with open(pdf_path, "rb") as f:
|
159 |
+
reader = PyPDF2.PdfReader(f)
|
160 |
+
for page_num, page in enumerate(reader.pages, start=1):
|
161 |
+
page_text = page.extract_text()
|
162 |
+
page_text = page_text.strip() if page_text else ""
|
163 |
+
if page_text:
|
164 |
+
# ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํค๋์ ๋ณธ๋ฌธ์ Markdown์ผ๋ก ํฉ์นจ
|
165 |
+
text_chunks.append(f"## Page {page_num}\n\n{page_text}\n")
|
166 |
+
return "\n".join(text_chunks)
|
167 |
+
|
168 |
+
|
169 |
def process_new_user_message(message: dict) -> list[dict]:
|
170 |
+
"""
|
171 |
+
์ user message์์ text, ํ์ผ(์ด๋ฏธ์ง/๋น๋์ค/PDF)์ ์ฒ๋ฆฌ.
|
172 |
+
"""
|
173 |
if not message["files"]:
|
174 |
return [{"type": "text", "text": message["text"]}]
|
175 |
|
176 |
+
# [PDF] PDF ํ์ผ ๋ชฉ๋ก
|
177 |
+
pdf_files = [f for f in message["files"] if f.endswith(".pdf")]
|
178 |
+
# ์ด๋ฏธ์งยท๋น๋์ค ๋ชฉ๋ก
|
179 |
+
other_files = [f for f in message["files"] if not f.endswith(".pdf")]
|
180 |
+
|
181 |
+
# ์ผ๋จ ์ฌ์ฉ์์ text๋ฅผ ๊ฐ์ฅ ๋จผ์ ๋ฃ๋๋ค
|
182 |
+
content_list = [{"type": "text", "text": message["text"]}]
|
183 |
+
|
184 |
+
# PDF ๋ณํ ํ ์ถ๊ฐ
|
185 |
+
for pdf_path in pdf_files:
|
186 |
+
pdf_markdown = pdf_to_markdown(pdf_path)
|
187 |
+
if pdf_markdown.strip():
|
188 |
+
content_list.append({"type": "text", "text": pdf_markdown})
|
189 |
+
else:
|
190 |
+
content_list.append({"type": "text", "text": "(PDF์์ ํ
์คํธ ์ถ์ถ ์คํจ)"})
|
191 |
+
|
192 |
|
193 |
+
# ์์์ด ์๋์ง ํ์ธ
|
194 |
+
video_files = [f for f in other_files if f.endswith(".mp4")]
|
195 |
+
if video_files:
|
196 |
+
# ๋น๋์ค๋ ํ ๊ฐ๋ง ์ฒ๋ฆฌํ๋ค๋ ์ ์ (validate_media_constraints์์ ์ด๋ฏธ ๊ฒ์ฌ)
|
197 |
+
# ์ฌ๋ฌ ๊ฐ์ผ ๊ฒฝ์ฐ ์ฒซ ๋ฒ์งธ ๊ฒ๋ง ์ฒ๋ฆฌํ๊ฑฐ๋, ๊ฒฝ๊ณ ์ฒ๋ฆฌ
|
198 |
+
content_list += process_video(video_files[0])
|
199 |
+
return content_list
|
200 |
+
|
201 |
+
# interleaved ์ด๋ฏธ์ง
|
202 |
if "<image>" in message["text"]:
|
203 |
return process_interleaved_images(message)
|
204 |
|
205 |
+
# ์ผ๋ฐ ์ด๋ฏธ์ง(์ฌ๋ฌ ์ฅ)
|
206 |
+
image_files = [f for f in other_files if not f.endswith(".mp4")]
|
207 |
+
if image_files:
|
208 |
+
content_list += [{"type": "image", "url": path} for path in image_files]
|
209 |
+
|
210 |
+
return content_list
|
211 |
|
212 |
|
213 |
def process_history(history: list[dict]) -> list[dict]:
|
|
|
385 |
],
|
386 |
]
|
387 |
|
|
|
|
|
388 |
|
|
|
|
|
|
|
389 |
|
390 |
+
# [PDF] .pdf ํ์ฉ
|
391 |
demo = gr.ChatInterface(
|
392 |
fn=run,
|
393 |
type="messages",
|
394 |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
395 |
+
textbox=gr.MultimodalTextbox(
|
396 |
+
file_types=["image", ".mp4", ".pdf"], # [PDF] ํ์ฉ
|
397 |
+
file_count="multiple",
|
398 |
+
autofocus=True
|
399 |
+
),
|
400 |
multimodal=True,
|
401 |
additional_inputs=[
|
402 |
+
gr.Textbox(label="System Prompt", value="ou are a deeply thoughtful AI. Consider problems thoroughly and derive correct solutions through systematic reasoning. Please answer in korean."),
|
403 |
+
gr.Slider(label="Max New Tokens", minimum=100, maximum=8000, step=50, value=2000),
|
404 |
],
|
405 |
stop_btn=False,
|
406 |
title="Gemma 3 27B IT",
|
|
|
407 |
examples=examples,
|
408 |
run_examples_on_click=False,
|
409 |
cache_examples=False,
|