Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -14,8 +14,13 @@ from loguru import logger
|
|
14 |
from PIL import Image
|
15 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
16 |
|
17 |
-
# [
|
18 |
-
import
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
21 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
@@ -26,6 +31,51 @@ model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
26 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
27 |
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
30 |
image_count = 0
|
31 |
video_count = 0
|
@@ -52,15 +102,20 @@ def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
|
52 |
|
53 |
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
54 |
"""
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
57 |
"""
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
64 |
history_image_count, history_video_count = count_files_in_history(history)
|
65 |
image_count = history_image_count + new_image_count
|
66 |
video_count = history_video_count + new_video_count
|
@@ -75,25 +130,19 @@ def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
|
75 |
if "<image>" in message["text"]:
|
76 |
gr.Warning("Using <image> tags with video files is not supported.")
|
77 |
return False
|
78 |
-
# TODO: Add frame count validation for videos similar to image count limits # noqa: FIX002, TD002, TD003
|
79 |
-
|
80 |
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
81 |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
82 |
return False
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
# <image> ํ๊ทธ๊ฐ ์์ ๊ฒฝ์ฐ, ์ด๋ฏธ์ง ๊ฐ์์ ๋งค์นญ ๊ฒ์ฌ
|
88 |
-
if "<image>" in message["text"]:
|
89 |
-
# new_image_count๋ pdf ์ ์ธ๋ ์ด๋ฏธ์ง ์
|
90 |
-
if message["text"].count("<image>") != new_image_count:
|
91 |
-
gr.Warning("The number of <image> tags in the text does not match the number of images.")
|
92 |
-
return False
|
93 |
|
94 |
return True
|
95 |
|
96 |
|
|
|
|
|
|
|
97 |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
98 |
vidcap = cv2.VideoCapture(video_path)
|
99 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
@@ -128,6 +177,9 @@ def process_video(video_path: str) -> list[dict]:
|
|
128 |
return content
|
129 |
|
130 |
|
|
|
|
|
|
|
131 |
def process_interleaved_images(message: dict) -> list[dict]:
|
132 |
logger.debug(f"{message['files']=}")
|
133 |
parts = re.split(r"(<image>)", message["text"])
|
@@ -149,52 +201,40 @@ def process_interleaved_images(message: dict) -> list[dict]:
|
|
149 |
return content
|
150 |
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
PDF ํ์ผ์ ํ
์คํธ๋ก ์ถ์ถ ํ, ๊ฐ๋จํ Markdown ํํ๋ก ๋ฐํ.
|
156 |
-
"""
|
157 |
-
text_chunks = []
|
158 |
-
with open(pdf_path, "rb") as f:
|
159 |
-
reader = PyPDF2.PdfReader(f)
|
160 |
-
for page_num, page in enumerate(reader.pages, start=1):
|
161 |
-
page_text = page.extract_text()
|
162 |
-
page_text = page_text.strip() if page_text else ""
|
163 |
-
if page_text:
|
164 |
-
# ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํค๋์ ๋ณธ๋ฌธ์ Markdown์ผ๋ก ํฉ์นจ
|
165 |
-
text_chunks.append(f"## Page {page_num}\n\n{page_text}\n")
|
166 |
-
return "\n".join(text_chunks)
|
167 |
-
|
168 |
-
|
169 |
def process_new_user_message(message: dict) -> list[dict]:
|
170 |
"""
|
171 |
-
|
|
|
|
|
|
|
172 |
"""
|
173 |
if not message["files"]:
|
174 |
return [{"type": "text", "text": message["text"]}]
|
175 |
|
176 |
-
#
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
180 |
|
181 |
-
#
|
182 |
content_list = [{"type": "text", "text": message["text"]}]
|
183 |
|
184 |
-
#
|
185 |
-
for
|
186 |
-
|
187 |
-
|
188 |
-
content_list.append({"type": "text", "text": pdf_markdown})
|
189 |
-
else:
|
190 |
-
content_list.append({"type": "text", "text": "(PDF์์ ํ
์คํธ ์ถ์ถ ์คํจ)"})
|
191 |
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
#
|
194 |
-
video_files = [f for f in other_files if f.endswith(".mp4")]
|
195 |
if video_files:
|
196 |
-
# ๋น๋์ค๋ ํ ๊ฐ๋ง ์ฒ๋ฆฌํ๋ค๋ ์ ์ (validate_media_constraints์์ ์ด๋ฏธ ๊ฒ์ฌ)
|
197 |
-
# ์ฌ๋ฌ ๊ฐ์ผ ๊ฒฝ์ฐ ์ฒซ ๋ฒ์งธ ๊ฒ๋ง ์ฒ๋ฆฌํ๊ฑฐ๋, ๊ฒฝ๊ณ ์ฒ๋ฆฌ
|
198 |
content_list += process_video(video_files[0])
|
199 |
return content_list
|
200 |
|
@@ -203,13 +243,16 @@ def process_new_user_message(message: dict) -> list[dict]:
|
|
203 |
return process_interleaved_images(message)
|
204 |
|
205 |
# ์ผ๋ฐ ์ด๋ฏธ์ง(์ฌ๋ฌ ์ฅ)
|
206 |
-
image_files = [f for f in other_files if not f.endswith(".mp4")]
|
207 |
if image_files:
|
208 |
-
|
|
|
209 |
|
210 |
return content_list
|
211 |
|
212 |
|
|
|
|
|
|
|
213 |
def process_history(history: list[dict]) -> list[dict]:
|
214 |
messages = []
|
215 |
current_user_content: list[dict] = []
|
@@ -228,6 +271,9 @@ def process_history(history: list[dict]) -> list[dict]:
|
|
228 |
return messages
|
229 |
|
230 |
|
|
|
|
|
|
|
231 |
@spaces.GPU(duration=120)
|
232 |
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
|
233 |
if not validate_media_constraints(message, history):
|
@@ -263,6 +309,9 @@ def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tok
|
|
263 |
yield output
|
264 |
|
265 |
|
|
|
|
|
|
|
266 |
examples = [
|
267 |
[
|
268 |
{
|
@@ -386,21 +435,35 @@ examples = [
|
|
386 |
]
|
387 |
|
388 |
|
389 |
-
|
390 |
-
#
|
|
|
391 |
demo = gr.ChatInterface(
|
392 |
fn=run,
|
393 |
type="messages",
|
394 |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
|
|
395 |
textbox=gr.MultimodalTextbox(
|
396 |
-
file_types=["image", ".mp4", ".pdf"],
|
397 |
file_count="multiple",
|
398 |
autofocus=True
|
399 |
),
|
400 |
multimodal=True,
|
401 |
additional_inputs=[
|
402 |
-
gr.Textbox(
|
403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
],
|
405 |
stop_btn=False,
|
406 |
title="Gemma 3 27B IT",
|
|
|
14 |
from PIL import Image
|
15 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
16 |
|
17 |
+
# [CSV/TXT ๋ถ์์ฉ]
|
18 |
+
import pandas as pd
|
19 |
+
|
20 |
+
##################################################
|
21 |
+
# ์ ์ฒด ์ ๋ฌธ์ ๋๊ธฐ๋, ๋๋ฌด ํด ๊ฒฝ์ฐ ์๋ผ๋ด๊ธฐ ์ํ ์์
|
22 |
+
##################################################
|
23 |
+
MAX_CONTENT_CHARS = 8000 # ์: 8000์ ์ด๊ณผ ์ ์๋ผ๋
|
24 |
|
25 |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
26 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
|
|
31 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
32 |
|
33 |
|
34 |
+
##################################################
|
35 |
+
# CSV/TXT ์ ๋ฌธ ์ฒ๋ฆฌ ํจ์
|
36 |
+
##################################################
|
37 |
+
def analyze_csv_file(path: str) -> str:
|
38 |
+
"""
|
39 |
+
CSV ํ์ผ ์ ์ฒด๋ฅผ ๋ฌธ์์ด๋ก ๋ณํํ์ฌ ๋ฆฌํด.
|
40 |
+
๋๋ฌด ๊ธธ๋ฉด MAX_CONTENT_CHARS๊น์ง๋ง ์๋ผ๋.
|
41 |
+
"""
|
42 |
+
try:
|
43 |
+
df = pd.read_csv(path)
|
44 |
+
df_str = df.to_string()
|
45 |
+
if len(df_str) > MAX_CONTENT_CHARS:
|
46 |
+
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
47 |
+
|
48 |
+
return (
|
49 |
+
f"**[CSV File: {os.path.basename(path)}]**\n\n"
|
50 |
+
f"{df_str}"
|
51 |
+
)
|
52 |
+
except Exception as e:
|
53 |
+
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"
|
54 |
+
|
55 |
+
|
56 |
+
def analyze_txt_file(path: str) -> str:
|
57 |
+
"""
|
58 |
+
TXT ํ์ผ ์ ์ฒด ๋ด์ฉ์ ์ฝ์ด์ ๋ชจ๋ธ์ ๋๊น.
|
59 |
+
๋๋ฌด ๊ธธ๋ฉด MAX_CONTENT_CHARS๊น์ง๋ง ์๋ผ๋.
|
60 |
+
"""
|
61 |
+
try:
|
62 |
+
with open(path, "r", encoding="utf-8") as f:
|
63 |
+
text = f.read()
|
64 |
+
|
65 |
+
if len(text) > MAX_CONTENT_CHARS:
|
66 |
+
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
67 |
+
|
68 |
+
return (
|
69 |
+
f"**[TXT File: {os.path.basename(path)}]**\n\n"
|
70 |
+
f"{text}"
|
71 |
+
)
|
72 |
+
except Exception as e:
|
73 |
+
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"
|
74 |
+
|
75 |
+
|
76 |
+
##################################################
|
77 |
+
# ๊ธฐ์กด ๋ฏธ๋์ด ํ์ผ ๊ฒ์ฌ ๋ก์ง (์ด๋ฏธ์ง/๋น๋์ค)
|
78 |
+
##################################################
|
79 |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
80 |
image_count = 0
|
81 |
video_count = 0
|
|
|
102 |
|
103 |
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
104 |
"""
|
105 |
+
- ๋น๋์ค 1๊ฐ ์ด๊ณผ ๋ถ๊ฐ
|
106 |
+
- ๋น๋์ค/์ด๋ฏธ์ง ํผํฉ ๋ถ๊ฐ
|
107 |
+
- ์ด๋ฏธ์ง ๊ฐ์ MAX_NUM_IMAGES ์ด๊ณผ ๋ถ๊ฐ
|
108 |
+
- <image> ํ๊ทธ๊ฐ ์์ผ๋ฉด ํ๊ทธ ์์ ์ด๋ฏธ์ง ์ ์ผ์น
|
109 |
+
CSV, TXT, PDF ๋ฑ์ ์ฌ๊ธฐ์ ์ ํํ์ง ์์.
|
110 |
"""
|
111 |
+
media_files = []
|
112 |
+
for f in message["files"]:
|
113 |
+
# mp4๋ ๋ํ ์ด๋ฏธ์ง ํ์ฅ์๋ง ๊ฒ์ฌ
|
114 |
+
# (ํ์ผ๋ช
์ .png / .jpg / .gif / .webp ๋ฑ ์์ ๋)
|
115 |
+
if f.endswith(".mp4") or re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE):
|
116 |
+
media_files.append(f)
|
117 |
+
|
118 |
+
new_image_count, new_video_count = count_files_in_new_message(media_files)
|
119 |
history_image_count, history_video_count = count_files_in_history(history)
|
120 |
image_count = history_image_count + new_image_count
|
121 |
video_count = history_video_count + new_video_count
|
|
|
130 |
if "<image>" in message["text"]:
|
131 |
gr.Warning("Using <image> tags with video files is not supported.")
|
132 |
return False
|
|
|
|
|
133 |
if video_count == 0 and image_count > MAX_NUM_IMAGES:
|
134 |
gr.Warning(f"You can upload up to {MAX_NUM_IMAGES} images.")
|
135 |
return False
|
136 |
+
if "<image>" in message["text"] and message["text"].count("<image>") != new_image_count:
|
137 |
+
gr.Warning("The number of <image> tags in the text does not match the number of images.")
|
138 |
+
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
return True
|
141 |
|
142 |
|
143 |
+
##################################################
|
144 |
+
# ๋น๋์ค ์ฒ๋ฆฌ
|
145 |
+
##################################################
|
146 |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
147 |
vidcap = cv2.VideoCapture(video_path)
|
148 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
|
|
177 |
return content
|
178 |
|
179 |
|
180 |
+
##################################################
|
181 |
+
# interleaved <image> ํ๊ทธ ์ฒ๋ฆฌ
|
182 |
+
##################################################
|
183 |
def process_interleaved_images(message: dict) -> list[dict]:
|
184 |
logger.debug(f"{message['files']=}")
|
185 |
parts = re.split(r"(<image>)", message["text"])
|
|
|
201 |
return content
|
202 |
|
203 |
|
204 |
+
##################################################
|
205 |
+
# CSV, TXT ํ์ผ๋ ์ ๋ฌธ์ LLM์ ๋๊ธฐ๋๋ก
|
206 |
+
##################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
def process_new_user_message(message: dict) -> list[dict]:
|
208 |
"""
|
209 |
+
- mp4 -> ๋น๋์ค ์ฒ๋ฆฌ
|
210 |
+
- ์ด๋ฏธ์ง -> interleaved or multiple
|
211 |
+
- CSV -> ์ ์ฒด df.to_string() (๋๋ฌด ๊ธธ๋ฉด ์๋ผ๋)
|
212 |
+
- TXT -> ์ ์ฒด text (๋๋ฌด ๊ธธ๋ฉด ์๋ผ๋)
|
213 |
"""
|
214 |
if not message["files"]:
|
215 |
return [{"type": "text", "text": message["text"]}]
|
216 |
|
217 |
+
# ํ์ฅ์๋ณ ๋ถ๋ฅ
|
218 |
+
video_files = [f for f in message["files"] if f.endswith(".mp4")]
|
219 |
+
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
220 |
+
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
|
221 |
+
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
|
222 |
|
223 |
+
# ์ฌ์ฉ์ ํ
์คํธ
|
224 |
content_list = [{"type": "text", "text": message["text"]}]
|
225 |
|
226 |
+
# CSV ์ ๋ฌธ
|
227 |
+
for csv_path in csv_files:
|
228 |
+
csv_analysis = analyze_csv_file(csv_path)
|
229 |
+
content_list.append({"type": "text", "text": csv_analysis})
|
|
|
|
|
|
|
230 |
|
231 |
+
# TXT ์ ๋ฌธ
|
232 |
+
for txt_path in txt_files:
|
233 |
+
txt_analysis = analyze_txt_file(txt_path)
|
234 |
+
content_list.append({"type": "text", "text": txt_analysis})
|
235 |
|
236 |
+
# ๋น๋์ค
|
|
|
237 |
if video_files:
|
|
|
|
|
238 |
content_list += process_video(video_files[0])
|
239 |
return content_list
|
240 |
|
|
|
243 |
return process_interleaved_images(message)
|
244 |
|
245 |
# ์ผ๋ฐ ์ด๋ฏธ์ง(์ฌ๋ฌ ์ฅ)
|
|
|
246 |
if image_files:
|
247 |
+
for img_path in image_files:
|
248 |
+
content_list.append({"type": "image", "url": img_path})
|
249 |
|
250 |
return content_list
|
251 |
|
252 |
|
253 |
+
##################################################
|
254 |
+
# history -> LLM ๋ฉ์์ง ๋ณํ
|
255 |
+
##################################################
|
256 |
def process_history(history: list[dict]) -> list[dict]:
|
257 |
messages = []
|
258 |
current_user_content: list[dict] = []
|
|
|
271 |
return messages
|
272 |
|
273 |
|
274 |
+
##################################################
|
275 |
+
# ๋ฉ์ธ ์ถ๋ก ํจ์
|
276 |
+
##################################################
|
277 |
@spaces.GPU(duration=120)
|
278 |
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
|
279 |
if not validate_media_constraints(message, history):
|
|
|
309 |
yield output
|
310 |
|
311 |
|
312 |
+
##################################################
|
313 |
+
# ์์ ๋ชฉ๋ก (๊ธฐ์กด)
|
314 |
+
##################################################
|
315 |
examples = [
|
316 |
[
|
317 |
{
|
|
|
435 |
]
|
436 |
|
437 |
|
438 |
+
##################################################
|
439 |
+
# Gradio ChatInterface
|
440 |
+
##################################################
|
441 |
demo = gr.ChatInterface(
|
442 |
fn=run,
|
443 |
type="messages",
|
444 |
chatbot=gr.Chatbot(type="messages", scale=1, allow_tags=["image"]),
|
445 |
+
# ์ฌ๊ธฐ์ WEBP๋ฅผ ํฌํจํ ๋ชจ๋ ์ด๋ฏธ์ง, mp4, csv, txt, pdf ํ์ฉ
|
446 |
textbox=gr.MultimodalTextbox(
|
447 |
+
file_types=["image/*", ".mp4", ".csv", ".txt", ".pdf"],
|
448 |
file_count="multiple",
|
449 |
autofocus=True
|
450 |
),
|
451 |
multimodal=True,
|
452 |
additional_inputs=[
|
453 |
+
gr.Textbox(
|
454 |
+
label="System Prompt",
|
455 |
+
value=(
|
456 |
+
"You are a deeply thoughtful AI. Consider problems thoroughly and derive "
|
457 |
+
"correct solutions through systematic reasoning. Please answer in korean."
|
458 |
+
)
|
459 |
+
),
|
460 |
+
gr.Slider(
|
461 |
+
label="Max New Tokens",
|
462 |
+
minimum=100,
|
463 |
+
maximum=8000,
|
464 |
+
step=50,
|
465 |
+
value=2000
|
466 |
+
),
|
467 |
],
|
468 |
stop_btn=False,
|
469 |
title="Gemma 3 27B IT",
|