Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,10 @@ from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIter
|
|
17 |
# CSV/TXT ๋ถ์
|
18 |
import pandas as pd
|
19 |
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
23 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
@@ -31,16 +34,18 @@ model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
31 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
32 |
|
33 |
|
|
|
|
|
|
|
34 |
def analyze_csv_file(path: str) -> str:
|
35 |
"""
|
36 |
-
CSV ํ์ผ์
|
37 |
"""
|
38 |
try:
|
39 |
df = pd.read_csv(path)
|
40 |
df_str = df.to_string()
|
41 |
if len(df_str) > MAX_CONTENT_CHARS:
|
42 |
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
43 |
-
|
44 |
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
|
45 |
except Exception as e:
|
46 |
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"
|
@@ -48,19 +53,44 @@ def analyze_csv_file(path: str) -> str:
|
|
48 |
|
49 |
def analyze_txt_file(path: str) -> str:
|
50 |
"""
|
51 |
-
TXT ํ์ผ ์ ๋ฌธ
|
52 |
"""
|
53 |
try:
|
54 |
with open(path, "r", encoding="utf-8") as f:
|
55 |
text = f.read()
|
56 |
if len(text) > MAX_CONTENT_CHARS:
|
57 |
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
58 |
-
|
59 |
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
|
60 |
except Exception as e:
|
61 |
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
65 |
image_count = 0
|
66 |
video_count = 0
|
@@ -88,14 +118,16 @@ def count_files_in_history(history: list[dict]) -> tuple[int, int]:
|
|
88 |
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
89 |
"""
|
90 |
- ๋น๋์ค 1๊ฐ ์ด๊ณผ ๋ถ๊ฐ
|
91 |
-
-
|
92 |
- ์ด๋ฏธ์ง ๊ฐ์ MAX_NUM_IMAGES ์ด๊ณผ ๋ถ๊ฐ
|
93 |
-
- <image> ํ๊ทธ๊ฐ ์์ผ๋ฉด ํ๊ทธ ์์ ์ค์ ์ด๋ฏธ์ง
|
94 |
-
- CSV, TXT, PDF ๋ฑ์ ์ฌ๊ธฐ์ ์ ํํ์ง
|
95 |
"""
|
96 |
media_files = []
|
97 |
for f in message["files"]:
|
98 |
-
#
|
|
|
|
|
99 |
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
|
100 |
media_files.append(f)
|
101 |
|
@@ -124,6 +156,9 @@ def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
|
124 |
return True
|
125 |
|
126 |
|
|
|
|
|
|
|
127 |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
128 |
vidcap = cv2.VideoCapture(video_path)
|
129 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
@@ -158,84 +193,103 @@ def process_video(video_path: str) -> list[dict]:
|
|
158 |
return content
|
159 |
|
160 |
|
|
|
|
|
|
|
161 |
def process_interleaved_images(message: dict) -> list[dict]:
|
162 |
-
logger.debug(f"{message['files']=}")
|
163 |
parts = re.split(r"(<image>)", message["text"])
|
164 |
-
logger.debug(f"{parts=}")
|
165 |
-
|
166 |
content = []
|
167 |
image_index = 0
|
168 |
for part in parts:
|
169 |
if part == "<image>":
|
170 |
content.append({"type": "image", "url": message["files"][image_index]})
|
171 |
-
logger.debug(f"file: {message['files'][image_index]}")
|
172 |
image_index += 1
|
173 |
elif part.strip():
|
174 |
content.append({"type": "text", "text": part.strip()})
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
178 |
return content
|
179 |
|
180 |
|
|
|
|
|
|
|
181 |
def process_new_user_message(message: dict) -> list[dict]:
|
182 |
if not message["files"]:
|
183 |
return [{"type": "text", "text": message["text"]}]
|
184 |
|
185 |
-
#
|
186 |
video_files = [f for f in message["files"] if f.endswith(".mp4")]
|
187 |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
188 |
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
|
189 |
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
|
|
|
190 |
|
191 |
-
# ์ฌ์ฉ์
|
192 |
content_list = [{"type": "text", "text": message["text"]}]
|
193 |
|
194 |
-
# CSV
|
195 |
for csv_path in csv_files:
|
196 |
csv_analysis = analyze_csv_file(csv_path)
|
197 |
content_list.append({"type": "text", "text": csv_analysis})
|
198 |
|
199 |
-
# TXT
|
200 |
for txt_path in txt_files:
|
201 |
txt_analysis = analyze_txt_file(txt_path)
|
202 |
content_list.append({"type": "text", "text": txt_analysis})
|
203 |
|
204 |
-
#
|
|
|
|
|
|
|
|
|
|
|
205 |
if video_files:
|
206 |
content_list += process_video(video_files[0])
|
207 |
return content_list
|
208 |
|
209 |
-
#
|
210 |
if "<image>" in message["text"]:
|
|
|
211 |
return process_interleaved_images(message)
|
212 |
-
|
213 |
-
|
214 |
-
if image_files:
|
215 |
for img_path in image_files:
|
216 |
content_list.append({"type": "image", "url": img_path})
|
217 |
|
218 |
return content_list
|
219 |
|
220 |
|
|
|
|
|
|
|
221 |
def process_history(history: list[dict]) -> list[dict]:
|
222 |
messages = []
|
223 |
current_user_content: list[dict] = []
|
224 |
for item in history:
|
225 |
if item["role"] == "assistant":
|
|
|
226 |
if current_user_content:
|
227 |
messages.append({"role": "user", "content": current_user_content})
|
228 |
current_user_content = []
|
|
|
229 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
|
230 |
else:
|
|
|
231 |
content = item["content"]
|
232 |
if isinstance(content, str):
|
233 |
current_user_content.append({"type": "text", "text": content})
|
234 |
else:
|
|
|
235 |
current_user_content.append({"type": "image", "url": content[0]})
|
236 |
return messages
|
237 |
|
238 |
|
|
|
|
|
|
|
239 |
@spaces.GPU(duration=120)
|
240 |
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
|
241 |
if not validate_media_constraints(message, history):
|
@@ -257,140 +311,37 @@ def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tok
|
|
257 |
).to(device=model.device, dtype=torch.bfloat16)
|
258 |
|
259 |
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
260 |
-
|
261 |
inputs,
|
262 |
streamer=streamer,
|
263 |
max_new_tokens=max_new_tokens,
|
264 |
)
|
265 |
-
t = Thread(target=model.generate, kwargs=
|
266 |
t.start()
|
267 |
|
268 |
output = ""
|
269 |
-
for
|
270 |
-
output +=
|
271 |
yield output
|
272 |
|
273 |
|
|
|
|
|
|
|
274 |
examples = [
|
275 |
[
|
276 |
{
|
277 |
-
"text": "
|
278 |
-
"files": [],
|
279 |
-
}
|
280 |
-
],
|
281 |
-
[
|
282 |
-
{
|
283 |
-
"text": "Write the matplotlib code to generate the same bar chart.",
|
284 |
-
"files": ["assets/additional-examples/barchart.png"],
|
285 |
-
}
|
286 |
-
],
|
287 |
-
[
|
288 |
-
{
|
289 |
-
"text": "What is odd about this video?",
|
290 |
-
"files": ["assets/additional-examples/tmp.mp4"],
|
291 |
-
}
|
292 |
-
],
|
293 |
-
[
|
294 |
-
{
|
295 |
-
"text": "I already have this supplement <image> and I want to buy this one <image>. Any warnings I should know about?",
|
296 |
-
"files": ["assets/additional-examples/pill1.png", "assets/additional-examples/pill2.png"],
|
297 |
-
}
|
298 |
-
],
|
299 |
-
[
|
300 |
-
{
|
301 |
-
"text": "Write a poem inspired by the visual elements of the images.",
|
302 |
-
"files": ["assets/sample-images/06-1.png", "assets/sample-images/06-2.png"],
|
303 |
-
}
|
304 |
-
],
|
305 |
-
[
|
306 |
-
{
|
307 |
-
"text": "Compose a short musical piece inspired by the visual elements of the images.",
|
308 |
-
"files": [
|
309 |
-
"assets/sample-images/07-1.png",
|
310 |
-
"assets/sample-images/07-2.png",
|
311 |
-
"assets/sample-images/07-3.png",
|
312 |
-
"assets/sample-images/07-4.png",
|
313 |
-
],
|
314 |
-
}
|
315 |
-
],
|
316 |
-
[
|
317 |
-
{
|
318 |
-
"text": "Write a short story about what might have happened in this house.",
|
319 |
-
"files": ["assets/sample-images/08.png"],
|
320 |
-
}
|
321 |
-
],
|
322 |
-
[
|
323 |
-
{
|
324 |
-
"text": "Create a short story based on the sequence of images.",
|
325 |
-
"files": [
|
326 |
-
"assets/sample-images/09-1.png",
|
327 |
-
"assets/sample-images/09-2.png",
|
328 |
-
"assets/sample-images/09-3.png",
|
329 |
-
"assets/sample-images/09-4.png",
|
330 |
-
"assets/sample-images/09-5.png",
|
331 |
-
],
|
332 |
-
}
|
333 |
-
],
|
334 |
-
[
|
335 |
-
{
|
336 |
-
"text": "Describe the creatures that would live in this world.",
|
337 |
-
"files": ["assets/sample-images/10.png"],
|
338 |
-
}
|
339 |
-
],
|
340 |
-
[
|
341 |
-
{
|
342 |
-
"text": "Read text in the image.",
|
343 |
-
"files": ["assets/additional-examples/1.png"],
|
344 |
-
}
|
345 |
-
],
|
346 |
-
[
|
347 |
-
{
|
348 |
-
"text": "When is this ticket dated and how much did it cost?",
|
349 |
-
"files": ["assets/additional-examples/2.png"],
|
350 |
-
}
|
351 |
-
],
|
352 |
-
[
|
353 |
-
{
|
354 |
-
"text": "Read the text in the image into markdown.",
|
355 |
-
"files": ["assets/additional-examples/3.png"],
|
356 |
-
}
|
357 |
-
],
|
358 |
-
[
|
359 |
-
{
|
360 |
-
"text": "Evaluate this integral.",
|
361 |
-
"files": ["assets/additional-examples/4.png"],
|
362 |
-
}
|
363 |
-
],
|
364 |
-
[
|
365 |
-
{
|
366 |
-
"text": "caption this image",
|
367 |
-
"files": ["assets/sample-images/01.png"],
|
368 |
-
}
|
369 |
-
],
|
370 |
-
[
|
371 |
-
{
|
372 |
-
"text": "What's the sign says?",
|
373 |
-
"files": ["assets/sample-images/02.png"],
|
374 |
-
}
|
375 |
-
],
|
376 |
-
[
|
377 |
-
{
|
378 |
-
"text": "Compare and contrast the two images.",
|
379 |
-
"files": ["assets/sample-images/03.png"],
|
380 |
-
}
|
381 |
-
],
|
382 |
-
[
|
383 |
-
{
|
384 |
-
"text": "List all the objects in the image and their colors.",
|
385 |
-
"files": ["assets/sample-images/04.png"],
|
386 |
}
|
387 |
],
|
388 |
[
|
389 |
{
|
390 |
-
"text": "
|
391 |
-
"files": ["assets/sample
|
392 |
}
|
393 |
],
|
|
|
394 |
]
|
395 |
|
396 |
|
@@ -411,7 +362,10 @@ demo = gr.ChatInterface(
|
|
411 |
additional_inputs=[
|
412 |
gr.Textbox(
|
413 |
label="System Prompt",
|
414 |
-
value=
|
|
|
|
|
|
|
415 |
),
|
416 |
gr.Slider(label="Max New Tokens", minimum=100, maximum=8000, step=50, value=2000),
|
417 |
],
|
|
|
17 |
# CSV/TXT ๋ถ์
|
18 |
import pandas as pd
|
19 |
|
20 |
+
# PDF ํ
์คํธ ์ถ์ถ
|
21 |
+
import PyPDF2
|
22 |
+
|
23 |
+
MAX_CONTENT_CHARS = 8000 # ๋๋ฌด ํฐ ํ์ผ์ ๋ง๊ธฐ ์ํด ์ต๋ ํ์ 8000์
|
24 |
|
25 |
model_id = os.getenv("MODEL_ID", "google/gemma-3-27b-it")
|
26 |
processor = AutoProcessor.from_pretrained(model_id, padding_side="left")
|
|
|
34 |
MAX_NUM_IMAGES = int(os.getenv("MAX_NUM_IMAGES", "5"))
|
35 |
|
36 |
|
37 |
+
##################################################
|
38 |
+
# CSV, TXT, PDF ๋ถ์ ํจ์
|
39 |
+
##################################################
|
40 |
def analyze_csv_file(path: str) -> str:
|
41 |
"""
|
42 |
+
CSV ํ์ผ์ ์ ์ฒด ๋ฌธ์์ด๋ก ๋ณํ. ๋๋ฌด ๊ธธ ๊ฒฝ์ฐ ์ผ๋ถ๋ง ํ์.
|
43 |
"""
|
44 |
try:
|
45 |
df = pd.read_csv(path)
|
46 |
df_str = df.to_string()
|
47 |
if len(df_str) > MAX_CONTENT_CHARS:
|
48 |
df_str = df_str[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
|
|
49 |
return f"**[CSV File: {os.path.basename(path)}]**\n\n{df_str}"
|
50 |
except Exception as e:
|
51 |
return f"Failed to read CSV ({os.path.basename(path)}): {str(e)}"
|
|
|
53 |
|
54 |
def analyze_txt_file(path: str) -> str:
|
55 |
"""
|
56 |
+
TXT ํ์ผ ์ ๋ฌธ ์ฝ๊ธฐ. ๋๋ฌด ๊ธธ๋ฉด ์ผ๋ถ๋ง ํ์.
|
57 |
"""
|
58 |
try:
|
59 |
with open(path, "r", encoding="utf-8") as f:
|
60 |
text = f.read()
|
61 |
if len(text) > MAX_CONTENT_CHARS:
|
62 |
text = text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
|
|
63 |
return f"**[TXT File: {os.path.basename(path)}]**\n\n{text}"
|
64 |
except Exception as e:
|
65 |
return f"Failed to read TXT ({os.path.basename(path)}): {str(e)}"
|
66 |
|
67 |
|
68 |
+
def pdf_to_markdown(pdf_path: str) -> str:
|
69 |
+
"""
|
70 |
+
PDF โ Markdown. ํ์ด์ง๋ณ๋ก ๊ฐ๋จํ ํ
์คํธ ์ถ์ถ.
|
71 |
+
"""
|
72 |
+
text_chunks = []
|
73 |
+
try:
|
74 |
+
with open(pdf_path, "rb") as f:
|
75 |
+
reader = PyPDF2.PdfReader(f)
|
76 |
+
for page_num, page in enumerate(reader.pages, start=1):
|
77 |
+
page_text = page.extract_text() or ""
|
78 |
+
page_text = page_text.strip()
|
79 |
+
if page_text:
|
80 |
+
text_chunks.append(f"## Page {page_num}\n\n{page_text}\n")
|
81 |
+
except Exception as e:
|
82 |
+
return f"Failed to read PDF ({os.path.basename(pdf_path)}): {str(e)}"
|
83 |
+
|
84 |
+
full_text = "\n".join(text_chunks)
|
85 |
+
if len(full_text) > MAX_CONTENT_CHARS:
|
86 |
+
full_text = full_text[:MAX_CONTENT_CHARS] + "\n...(truncated)..."
|
87 |
+
|
88 |
+
return f"**[PDF File: {os.path.basename(pdf_path)}]**\n\n{full_text}"
|
89 |
+
|
90 |
+
|
91 |
+
##################################################
|
92 |
+
# ์ด๋ฏธ์ง/๋น๋์ค ์
๋ก๋ ์ ํ ๊ฒ์ฌ
|
93 |
+
##################################################
|
94 |
def count_files_in_new_message(paths: list[str]) -> tuple[int, int]:
|
95 |
image_count = 0
|
96 |
video_count = 0
|
|
|
118 |
def validate_media_constraints(message: dict, history: list[dict]) -> bool:
|
119 |
"""
|
120 |
- ๋น๋์ค 1๊ฐ ์ด๊ณผ ๋ถ๊ฐ
|
121 |
+
- ๋น๋์ค์ ์ด๋ฏธ์ง ํผํฉ ๋ถ๊ฐ
|
122 |
- ์ด๋ฏธ์ง ๊ฐ์ MAX_NUM_IMAGES ์ด๊ณผ ๋ถ๊ฐ
|
123 |
+
- <image> ํ๊ทธ๊ฐ ์์ผ๋ฉด ํ๊ทธ ์์ ์ค์ ์ด๋ฏธ์ง ์ ์ผ์น
|
124 |
+
- CSV, TXT, PDF ๋ฑ์ ์ฌ๊ธฐ์ ์ ํํ์ง ์์
|
125 |
"""
|
126 |
media_files = []
|
127 |
for f in message["files"]:
|
128 |
+
# ์ด๋ฏธ์ง: png/jpg/jpeg/gif/webp
|
129 |
+
# ๋น๋์ค: mp4
|
130 |
+
# cf) PDF, CSV, TXT ๋ฑ์ ์ ์ธ
|
131 |
if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE) or f.endswith(".mp4"):
|
132 |
media_files.append(f)
|
133 |
|
|
|
156 |
return True
|
157 |
|
158 |
|
159 |
+
##################################################
|
160 |
+
# ๋น๋์ค ์ฒ๋ฆฌ
|
161 |
+
##################################################
|
162 |
def downsample_video(video_path: str) -> list[tuple[Image.Image, float]]:
|
163 |
vidcap = cv2.VideoCapture(video_path)
|
164 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
|
|
193 |
return content
|
194 |
|
195 |
|
196 |
+
##################################################
|
197 |
+
# interleaved <image> ์ฒ๋ฆฌ
|
198 |
+
##################################################
|
199 |
def process_interleaved_images(message: dict) -> list[dict]:
|
|
|
200 |
parts = re.split(r"(<image>)", message["text"])
|
|
|
|
|
201 |
content = []
|
202 |
image_index = 0
|
203 |
for part in parts:
|
204 |
if part == "<image>":
|
205 |
content.append({"type": "image", "url": message["files"][image_index]})
|
|
|
206 |
image_index += 1
|
207 |
elif part.strip():
|
208 |
content.append({"type": "text", "text": part.strip()})
|
209 |
+
else:
|
210 |
+
# ๊ณต๋ฐฑ์ด๊ฑฐ๋ \n ๊ฐ์ ๊ฒฝ์ฐ
|
211 |
+
if isinstance(part, str) and part != "<image>":
|
212 |
+
content.append({"type": "text", "text": part})
|
213 |
return content
|
214 |
|
215 |
|
216 |
+
##################################################
|
217 |
+
# PDF + CSV + TXT + ์ด๋ฏธ์ง/๋น๋์ค
|
218 |
+
##################################################
|
219 |
def process_new_user_message(message: dict) -> list[dict]:
|
220 |
if not message["files"]:
|
221 |
return [{"type": "text", "text": message["text"]}]
|
222 |
|
223 |
+
# 1) ํ์ผ ๋ถ๋ฅ
|
224 |
video_files = [f for f in message["files"] if f.endswith(".mp4")]
|
225 |
image_files = [f for f in message["files"] if re.search(r"\.(png|jpg|jpeg|gif|webp)$", f, re.IGNORECASE)]
|
226 |
csv_files = [f for f in message["files"] if f.lower().endswith(".csv")]
|
227 |
txt_files = [f for f in message["files"] if f.lower().endswith(".txt")]
|
228 |
+
pdf_files = [f for f in message["files"] if f.lower().endswith(".pdf")]
|
229 |
|
230 |
+
# 2) ์ฌ์ฉ์ ์๋ณธ text ์ถ๊ฐ
|
231 |
content_list = [{"type": "text", "text": message["text"]}]
|
232 |
|
233 |
+
# 3) CSV
|
234 |
for csv_path in csv_files:
|
235 |
csv_analysis = analyze_csv_file(csv_path)
|
236 |
content_list.append({"type": "text", "text": csv_analysis})
|
237 |
|
238 |
+
# 4) TXT
|
239 |
for txt_path in txt_files:
|
240 |
txt_analysis = analyze_txt_file(txt_path)
|
241 |
content_list.append({"type": "text", "text": txt_analysis})
|
242 |
|
243 |
+
# 5) PDF
|
244 |
+
for pdf_path in pdf_files:
|
245 |
+
pdf_markdown = pdf_to_markdown(pdf_path)
|
246 |
+
content_list.append({"type": "text", "text": pdf_markdown})
|
247 |
+
|
248 |
+
# 6) ๋น๋์ค (ํ ๊ฐ๋ง ํ์ฉ)
|
249 |
if video_files:
|
250 |
content_list += process_video(video_files[0])
|
251 |
return content_list
|
252 |
|
253 |
+
# 7) ์ด๋ฏธ์ง ์ฒ๋ฆฌ
|
254 |
if "<image>" in message["text"]:
|
255 |
+
# interleaved
|
256 |
return process_interleaved_images(message)
|
257 |
+
else:
|
258 |
+
# ์ผ๋ฐ ์ฌ๋ฌ ์ฅ
|
|
|
259 |
for img_path in image_files:
|
260 |
content_list.append({"type": "image", "url": img_path})
|
261 |
|
262 |
return content_list
|
263 |
|
264 |
|
265 |
+
##################################################
|
266 |
+
# history -> LLM ๋ฉ์์ง ๋ณํ
|
267 |
+
##################################################
|
268 |
def process_history(history: list[dict]) -> list[dict]:
|
269 |
messages = []
|
270 |
current_user_content: list[dict] = []
|
271 |
for item in history:
|
272 |
if item["role"] == "assistant":
|
273 |
+
# user_content๊ฐ ์์ฌ์๋ค๋ฉด user ๋ฉ์์ง๋ก ์ ์ฅ
|
274 |
if current_user_content:
|
275 |
messages.append({"role": "user", "content": current_user_content})
|
276 |
current_user_content = []
|
277 |
+
# ๊ทธ ๋ค item์ assistant
|
278 |
messages.append({"role": "assistant", "content": [{"type": "text", "text": item["content"]}]})
|
279 |
else:
|
280 |
+
# user
|
281 |
content = item["content"]
|
282 |
if isinstance(content, str):
|
283 |
current_user_content.append({"type": "text", "text": content})
|
284 |
else:
|
285 |
+
# ์ด๋ฏธ์ง๋ ๊ธฐํ
|
286 |
current_user_content.append({"type": "image", "url": content[0]})
|
287 |
return messages
|
288 |
|
289 |
|
290 |
+
##################################################
|
291 |
+
# ๋ฉ์ธ ์ถ๋ก ํจ์
|
292 |
+
##################################################
|
293 |
@spaces.GPU(duration=120)
|
294 |
def run(message: dict, history: list[dict], system_prompt: str = "", max_new_tokens: int = 512) -> Iterator[str]:
|
295 |
if not validate_media_constraints(message, history):
|
|
|
311 |
).to(device=model.device, dtype=torch.bfloat16)
|
312 |
|
313 |
streamer = TextIteratorStreamer(processor, timeout=30.0, skip_prompt=True, skip_special_tokens=True)
|
314 |
+
gen_kwargs = dict(
|
315 |
inputs,
|
316 |
streamer=streamer,
|
317 |
max_new_tokens=max_new_tokens,
|
318 |
)
|
319 |
+
t = Thread(target=model.generate, kwargs=gen_kwargs)
|
320 |
t.start()
|
321 |
|
322 |
output = ""
|
323 |
+
for new_text in streamer:
|
324 |
+
output += new_text
|
325 |
yield output
|
326 |
|
327 |
|
328 |
+
##################################################
|
329 |
+
# ์์๋ค (๊ธฐ์กด)
|
330 |
+
##################################################
|
331 |
examples = [
|
332 |
[
|
333 |
{
|
334 |
+
"text": "Test with PDF",
|
335 |
+
"files": ["assets/sample.pdf"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
}
|
337 |
],
|
338 |
[
|
339 |
{
|
340 |
+
"text": "Simple text with CSV upload.",
|
341 |
+
"files": ["assets/sample.csv"],
|
342 |
}
|
343 |
],
|
344 |
+
# ...์๋ ์์๋ค ์ ์ง...
|
345 |
]
|
346 |
|
347 |
|
|
|
362 |
additional_inputs=[
|
363 |
gr.Textbox(
|
364 |
label="System Prompt",
|
365 |
+
value=(
|
366 |
+
"You are a deeply thoughtful AI. Consider problems thoroughly and derive "
|
367 |
+
"correct solutions through systematic reasoning. Please answer in korean."
|
368 |
+
)
|
369 |
),
|
370 |
gr.Slider(label="Max New Tokens", minimum=100, maximum=8000, step=50, value=2000),
|
371 |
],
|